Scared Stiff by a Sniff: Behavioral response of *Bombina orientalis* tadpoles to a predator cue Reed College Bio342, Fall 2014 Audrey Spaeth

Many aquatic animals change their behavior in response to chemical cues in the water that indicate the presence of a predator. ⁽¹⁾

In tadpoles, this generally means moving less and hiding more.

What are they responding to?

No universal agreement. It could be:

- Chemical released from the bodies of prey-upon conspecifics⁽²⁾ •
- Chemicals directly released by predators ⁽³⁾ •
- A combination of the two⁽⁴⁾, possibly with learning involved ⁽⁵⁾ \bullet

Study System

http://www.discoverwildlife.com/print?id=37696

Prey: Bombina orientalis

- Oriental fire-bellied toad
- native to mountains of Korea
- not previously studied in a predator cue system

http://fineartamerica.com/featured/a-fire-bellied-toad-bombina-orientalis-joel-sartore.html

Predator: Gasterosteus aculeatus

- Three-spined stickleback
- widely distributed in aquatic ecosystems
- captured from Reed Lake

Measure tadpole activity levels.

Control: water

Treatment with water exposed to **crushed conspecifics** or stickleback eating tadpoles (but not only stickleback) significantly reduced tadpole activity.

Activity defined as the average number of distinct episodes of movement by each tadpole over six tenminute trial periods.

P-values from Wilcoxon signed-rank test, compared to control.

Groups with same color bar not significantly different.

One outlier from the crushed conspecifics group was removed for analysis.

B. orientalis tadpoles modify their behavior in response to chemical cues from conspecifics, but not necessarily from stickleback

More questions

- What is the fitness advantage of moving less in an environment with predators? •
- Are tadpoles responding to metabolites released by disturbed conspecifics ("disturbance • cues") or to chemicals released from damaged conspecific tissue ("alarm cues")? (1)
- Can tadpoles be trained to respond to a stickleback cue, by pairing it with a conspecific cue?

References

1. Ferrari et al. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems. Can. J. Zool. 88: 698–724.

2. Saglio & Mandrillon(2006). Embryonic experience to predation risk affects tadpoles of the common frog. Arch. Hyrdrobiol. 166: 505-523.

3. Van Buskirk (2001). Specific induced responses to different predator species in anuran larvae. J Evol. Biol. 14: 482-489.

4. Schoeppner & Relyea (2009). Interpreting the smells of predation. *Funct. Ecol.* 23: 1114–1121. 5. Polo-Cavia & Gomez-Mestre (2014). Learned recognition of introduced predators determines survival of tadpole prey. Funct. Ecol. 28: 432–439.

Acknowledgments I would like to thank Suzy Renn for experimental design help, Marisol Lauffer and Claire Brumbaugh-Smith for frog breeding, Robin Byron for write-up critique and general moral support, and Bob Kaplan for letting me get away with this.