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Abstract

Resolving phenotype variation within a population in response to environmental

perturbation is central to understanding biological adaptation. Relating meaningful

adaptive changes at the level of the transcriptome requires the identification of pro-

cesses that have a functional significance for the individual. This remains a major

objective towards understanding the complex interactions between environmental

demand and an individual’s capacity to respond to such demands. The interpretation

of such interactions and the significance of biological variation between individuals

from the same or different populations remain a difficult and under-addressed ques-

tion. Here, we provide evidence that variation in gene expression between individuals

in a zebrafish population can be partially resolved by a priori screening for animal

personality and accounts for >9% of observed variation in the brain transcriptome.

Proactive and reactive individuals within a wild-type population exhibit consistent

behavioural responses over time and context that relates to underlying differences in

regulated gene networks and predicted protein–protein interactions. These differences

can be mapped to distinct regions of the brain and provide a foundation towards

understanding the coordination of underpinning adaptive molecular events within

populations.
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Introduction

Understanding phenotypical variation and physiological

regulation during acclimation to external stimuli varia-

tion is a central issue in biology and underpins evolu-

tionary studies. In most studies across the biological

sciences, individuals within groups are considered as

simple replicates, and interindividual variation is

actively minimized, for example, using specific genetic

backgrounds. Such practice is commonplace in biology

and reflects the difficulties in understanding variation

and the prevalence of an approach often centred upon

differences between mean values of measured variables

for a population. However, it is common to observe sig-

nificant levels of variation, standard deviation, in many

different types of data that more probably obscure the

underlying individual differences that may have poten-

tial biological significance. Such an approach therefore

cannot be used to understand the underlying interac-

tions between individuals and their environment. Over

the past few years, an increasing interest in the diver-

sity of behavioural phenotypes and their consistency in

and between individuals within a population has

emerged (Sih et al. 2004; Wolf et al. 2007). This has been

accompanied by a growing nomenclature including

individual coping style, personality and behavioural
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syndromes that is typical to an intense interdisciplinary

effort (Dall et al. 2012). It has been suggested that the

use of such consistent behavioural subgroups within a

population greatly facilitates the interpretation of

measured biological responses by helping to resolve

variation in experimental measurements (MacKenzie

et al. 2009).

The adaptive response to changing environmental

conditions requires both genetic and epigenetic factors

acting in concert, and individuals within a population

have been shown to display significantly different

responses at the physiological level (Øverli et al. 2007).

To attain an adaptive response, a scaled suite of multi-

directional regulatory processes, from the transcriptome

to behaviour, interacts to optimize individual fitness.

Such interdependent responses at multiple scales of

biological regulation aka ‘complex system’ should be

consistent over time and context. These requirements

have been described at the level of animal behaviour

and have been referred to as ‘animal personality’ (Sih

et al. 2004; Dingemanse et al. 2010). Furthermore, consis-

tent individual variability in physiological and behavio-

ural responses to challenge named as individual or

stress coping style has been reported within animals of

the same species, sex and population across a wide range

of vertebrates including fish (Korte et al. 2005; Ruiz

Gomez et al. 2008; MacKenzie et al. 2009; Huntingford

et al. 2010). Consistent behavioural responses that in

this study we shall refer to as personality can be

broadly described as proactive, reactive and intermedi-

ate individuals within a population. This is based upon

consistency over time of specific individual behavioural

traits such as risk taking, aggression, activity and feed-

ing. The importance of understanding consistent differ-

ences between individual behaviour is manifest and

importantly facilitates the understanding and effective

measurement of an individual’s response during envi-

ronmental adaptation (Dingemanse et al. 2010).

In an initial study, we have shown how a priori

screening for proactive and reactive personalities can

significantly reduce within-population variation in gene

expression studies and increase the interpretative value

of physiological data (MacKenzie et al. 2009). However,

targeted gene expression studies are limited and cannot

describe a more complete system approach. A transcrip-

tome or gene expression profile is a collection of

mRNAs measured by microarray or RNA-seq within a

cell, tissue or organism that represents the available

transcripts at a specific point in time. Thus, measured

transcript profiles represent phenotypes shaped by the

genotype of an organism and the environment under

which it exists. The transcriptome is dynamic and can

be influenced by many factors, and in recent years, this

approach has been used to address diverse ecological,

evolutionary and environmental questions (Goetz &

MacKenzie 2008). A major issue in such studies is to

identify which changes in the transcriptome have a

functional significance for the individual. This is mainly

based upon the identification of differentially expressed

mRNAs between defined experimental groups, for

example, A vs B, where comparisons are time-, treat-

ment- or environment-dependent. The interpretation of

such interactions and the significance of biological vari-

ation between individuals from the same or different

populations remain a difficult and under-addressed

question (Whitehead & Crawford 2005, 2006a,b). Several

studies have shown that within populations of distinct

vertebrates including humans, mice and fish, significant

variation in gene expression is common and in some

cases may be higher than that observed among popula-

tions (Whitehead & Crawford 2006a). The reasons

behind the observed variation are currently unknown

although both the ecological context and genetic varia-

tion among individuals are two key contributory fac-

tors. As a result, the possibility to identify conserved

responses with a functional relevance both within and

across different vertebrate taxa aka bridging the pheno-

type-genotype gap remains a daunting task. Such con-

siderations raise questions about how to relate

differences at the transcriptome level to adaptive

phenotypic variation (Crawford & Oleksiak 2007).

In this study, we describe animal personalities in a

wild-type zebrafish population where proactive and

reactive individuals display time- and context-specific

differences in behaviour. This analysis is then used to

resolve variation in a large-scale transcriptomic data set

and provides insight into personality-dependent differ-

ences variation in the brain transcriptome. This increased

resolution allows the identification and in silico localiza-

tion of inter-related gene expression modules with

biological significance, thus providing a foundation for

future studies addressing adaptive variation within

populations.

Materials and methods

A whole population of Zebrafish (Danio rerio), males

and females, were obtained from a commercial supplier

(PS�, Parets del Valles, Barcelona) as juveniles and

maintained at standard conditions (12-h light/dark

cycle, mean Tº: 28 � 1 °C) on a stocking tank in our

aquarium facilities at a stocking density of one fish

per litre. The experimental tank for most of the behavio-

ural experiments was a 20-l glass aquarium

(40 9 25 9 20 cm) lined on three sides with white

paper; the front wall was not covered to allow the

observer to record the behaviour and divided at 1/3 of

its length with a black PVC screen with a 3-cm-diameter
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hole in the middle. All tank surfaces around this third

area of the tank were covered with dark paper and closed

on the upper part with a removable lid to provide a shel-

ter for the animals. For the first two tests, the hole was

covered with the same PVC plastic material and removed

once the screening started to allow the fish enter the

novel environment. For the first activity test, there was

no shelter, and the tank was divided into 16 equal

squares. For the second activity test, we created a shelter,

but the whole lid was removed, and the tank was divided

into four equal squares to measure activity and square

occupation (1 to 4 ordered in an inverted Z shape plus a

1/3 tank size shelter). For the mirror and the feeding test,

a 9-litre aquarium (30 9 15 9 20 cm) was used. In the

MIS test, the opposite face to the shelter was covered

with a mirror (15 9 20 cm). All animals were fasted the

day before the experiments.

Screening for risk taking in groups (boldness
experiment)

Methods were adapted from Huntingford et al. 2010

(Huntingford et al. 2010). A total number of 280 juvenile

fish were taken in groups of 9 and left for 10-min habit-

uation in the sheltered area with the hole closed with a

PVC screen, and the top of the sheltered area of the

tank also covered to provide a complete shelter. Then,

the lid covering the hole was gently removed. Either

the first 3 fish to exit the shelter or fish with latency

times inferior to 10 min were considered bold fish and

were gently removed with a fish net from the test tank

to avoid recruitment and provisionally placed in

another tank (P subpopulation) with the same size and

environmental conditions. Latency times of emergence

from the sheltered area were individually recorded. The

next 3 animals to emerge before 15 min were consid-

ered intermediate and also gently removed. Animals

that still remained inside the sheltered area after this

screening period were considered shy (R subpopula-

tion). The screening lasted a maximum time of 35 min

including the habituation time. Intermediate individuals

were discarded, and selected fish were held in separate

tanks (P and R populations) for a posteriori behavioural

tests. A number of 10 randomly selected fish for both

phenotypes were immediately killed by an overdose of

MS-222, brains were sampled and frozen on liquid

nitrogen for transcriptomic analysis.

The same screening test was performed with P and R

subpopulations (n = 36 of each subpopulation) in

adults, 10 months after the first screening for risk taking

in groups, to test for consistency and to validate the

previous first screening.

A consistent sample of fish screened for risk taking in

groups (n = 10 for P and R, males and females; N = 20)

was individually identified by visual external marks and

pooled together in the same tank for posterior behavioural

tests. The sequence of the behavioural tests was as follows:

first week, the individual activity test; second week, the

individual MIS tests directly followed by latency to feed-

ing after a confinement event test. After each test, all water

from the tankwas changed to avoid chemical communica-

tion between experimental individuals.

Activity test

Two different activity tests were performed. The first

test was an open-field activity test with no shelter. Ani-

mals were individually identified and placed in the test

arena and left for 10 min to habituate. The test was then

started, and animals were recorded with a colour video

camera (SONY� SSC-DC378P) mounted over the test

arena and connected by fire wire with a computer mon-

itor with a specific software to record and analyse the

data simultaneously (SMART 2.3, Panlab) for 5 min.

Variables recorded were activity (ACT, number of tran-

sitions), total distance (Dist, cm), mean speed (cm/sec)

and number of areas used (AR). We also calculated

occupancy percentages and index of activity (Sq.

Changes/Ttotal=300 sec).

The second test was visually recorded, and a shelter

was used. Animals were individually placed in a shelter

in an alternate pattern (P and R) and left for 10 min to

habituate. Then, the shelter was completely opened by

taking the lid off the tank, and the animals were

recorded for 5 min for latency to emerge from shelter,

total time in shelter (TTSh), activity (ACT, number of

squares crossed) and number of squares used in total

(SQR). Occupancy percentages and index of activity

were also calculated (Sq. Changes/Ttotal=300sec).

Mirror test or mirror-image stimulation (MIS)

A week later, the same 20 fish were tested for mirror-

image stimulation (MIS) or aggressive mirror test

(Budaev 1998; Budaev et al. 1999; Oliveira et al. 2005;

Archard & Braithwaite 2010). After 10-min habituation

to the new tank, the lid that covered the mirror was

lifted, and the test was run for 5 min. Variables mea-

sured were latency to realize the first approach (LFA),

number of bites to the image (Bite), number of aggres-

sive behaviours (AGR: parallel swimming, circles and

strikes) and time spent freezing (FRZ: complete lack of

movement only for eyes and gills).

Latency to first feeding after a confinement event

Directly after MIS test, the individual fish was caught

and held in a submerged net for no more than 1 min,
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while the mirror was removed. After this short confine-

ment, the fish was released into the tank and fed at the

same time with 3 red worms at the opposite side of the

tank. Latency to reassume feeding (Moretz et al. 2007)

was measured for each individual. Latency to first feed-

ing (LRF) was defined as the time taken to capture the

first worm. Additionally, time spent freezing (FRZ) for

each individual was recorded for 5 min.

Morphometric analysis

The relationship between a set of defined morphometric

variables was analysed, and additionally, the relation-

ship with Fulton’s condition index and cephalic index

was explored (Sutton et al. 2000; Nash et al. 2006). Ful-

ton’s condition factor is widely used in fish biology

studies (Brander 1995; R€atz & Stein 1999; R€atz & Lloret

2003). This factor is calculated from the relationship

between the weight of a fish and its length, with the

intention of describing the condition of that individual.

The formula is K = W/L3 where K = Fulton’s condition

factor, W = the weight of the fish and L is the length

(total length). The cephalic index represents head

length/total length. Individual fish were removed from

P and R subpopulation holding tanks (n = 68/group)

and measurements were taken. All weight measure-

ments were taken with an analytical balance

(�0.01 mg), and length measurements were made with

a regular caliper (�0.05 mm). For statistical analysis,

first, the relationship between morphometric measures

and personality was tested (t-test). Following this, we

then calculated the Fulton’s condition factor and the

cephalic index. Both indices were then compared with

personality (t-test).

Tissue sampling

Selected animals were killed by an overdose of MS-22,

and whole brains were carefully removed. Individual

brain samples were homogenized in 0.3 mL of

Tri-Reagent (Molecular Research Centre) and stored at

�80 °C for further molecular analysis. The experimental

protocols used for fish sampling have been reviewed

and approved by the Ethics and Animal Welfare Com-

mittee of the Universitat Aut�onoma de Barcelona,

Spain.

RNA isolation and microarray hybridization

Total RNA was extracted from individual zebrafish

brains (n = 10 from each group; N = 30 animals in total)

using the standard TriReagent-based method following

manufacturer’s instructions. Total RNA concentration

was quantified (Nanodrop ND-1000), and RNA integrity

and quality assessed (Bioanalyzer 2100, Agilent Tech-

nologies). The RNA integrity number (RIN) was calcu-

lated for each sample, and only RNAs with a RIN

number >7.5 were processed. Total RNA (1 lg) was

used to synthesize cDNA with SuperScript III Trans-

criptase (Invitrogen) and oligo-dT primers (Promega).

Total RNA (n = 30 individual brain samples) was

labelled and used for microarray hybridization. Micro-

array hybridizations were performed using the Zebra-

fish V2 (G2519F) 4x44K Agilent oligonucleotide

microarray. Standard methods were used for all pro-

cesses according to manufacturer’s instructions (Agilent

Technologies). Briefly, each amplified and labelled sam-

ple was hybridized at 65 °C for 17 h. Microarrays

were scanned, and one-channel TIFF images (Feature

Extraction software version 10.4.0.0) were imported

into GeneSpring software (GX 11.0). Microarray data

are described in accordance with MIAME guidelines

and have been submitted to Gene Expression Omni-

bus (http://www.ncbi.nlm.nih.gov/geo/ GEO Acces-

sion: GSE40615). For microarray analysis, standard

analytical methods were applied to the data obtained.

Briefly, array normalization (percentile shift normaliza-

tion) was carried out and data filtered by standard

deviation expression among groups (filter by expres-

sion). Signal intensities for unique probes within a

probe set were averaged to obtain an expression value

(median) for the probe set (Gene-level analysis). Statisti-

cal tests were implemented in the GeneSpring software

GX 11.0 used to select transcripts differentially

expressed (P < 0.001) between control and treatments.

One-way ANOVAs were used to identify significant

differences between treatments.

qPCR validation

Total RNA (1 lg) was used to synthesize cDNA with

Superscript III (Invitrogen) and oligo-dT (Promega)

according to manufacturer’s instructions. cDNA (1 lL)
was used as a template for PCR with specific primers

for Gadph, FLI-1, Protocadherin, Crx, Opsin, Hox5a,

Hox5c, Grk7 and Arrestin (Fig. S1). Primers were

designed with Primer3 version 4.0 based on target

sequences obtained from the Agilent database for each

mRNA of interest. Products were separated on agarose

gels, stained with SybSafe and purified with mini

columns (Qiagen). Purified PCR products were ligated

in pGEM-Teasy vector (Promega) and transformed in E.

coli (DH5a strain). One selected transformant of each

construct was grown to obtain plasmidic DNA (Mini-

prep kit, Macherey-Nagel). All constructs were verified

by sequencing.

Absolute quantification was performed to validate

the microarray expression data. The copy number of
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each transcript, derived from the standard dilution

curve obtained from target plasmid, was analysed using

the MyIQ real-time PCR system (Bio-Rad, CA). Each

sample was tested in triplicate in a 96-well plate. The

reaction mix (15 lL final volume) consisted of 7.5 lL of

EvoGreen mix (Bio-Rad), 0.75 lL of each primer

(500 nM final concentration), 2.5 lL of H2O and 3.75 lL
of a 1/100 dilution of the cDNA sample. The thermocy-

cling programme consisted of one hold at 95 °C for

4 min, followed by 40 cycles of 10 s at 95 °C and 45 s at

60 °C. After completion of these cycles, melting-curve

data were then collected to verify PCR specificity and

the absence of primer dimers.

PCA, Hierarchical clustering and ANOVA analysis

We performed a hierarchical clustering algorithm using

the Euclidean distance matrix and complete linkage

method. Analyses were conducted in the Cluster3/

TreeView open software (Eisen et al. 1998; de Hoon

et al. 2004; Saldanha 2004). Principal component analy-

sis (PCA) from the GO package shows two-dimensional

views, retrieved from SPSS 17 statistical software, and

was used to visualize the relatedness of all 20 individ-

ual microarray samples. To identify the phenotypic

transcriptional features of each personality, we con-

ducted both one-way and two-way ANOVAs, in which

the expression profile was modelled as a fixed effect

and focused on genes that were highly significant

(P < 0.001) for proactive and reactive individuals. All

P-values were adjusted with a false discovery rate

(FDR) correction for multiple testing by the Benjamini–

Hochberg method (Benjamini & Hochberg 1995). All

genes with FDR-corrected P-values <0.05 were consid-

ered significant. The expression of genes found to be

significantly different between both personalities were

further characterized by a hierarchical clustering analy-

sis. Hierarchical clustering was based upon expression

pattern across the sampled population, thereby identi-

fying clusters of genes with common expression

profiles. Sample variances were homogeneous (normal

distribution).

Gene Ontology (GO-DAVID analysis)

Enrichment of specific gene ontology (GO) terms among

the set of probes that are specific to personalities was

assessed to correlate a specific set of mRNAs within a

brain region. In all GO analyses, Ensembl Gene Identifi-

ers were tested using DAVID Bioinformatics Resources

(http://david.abcc.ncifcrf.gov/tools.jsp), (Huang et al.

2007; Sherman et al. 2007). Enrichment of each GO term

was evaluated through use of the Fisher’s exact test and

corrected for multiple testing with FDR (Benjamini &

Hochberg 1995). We applied a Bonferroni correction to

account for multiple tests performed. To interpret our

data, we used in GO-DAVID: the «Functional Annota-

tion»: the first associated gene ID with a biological term

that belongs to one of the 46 annotation anatomical

categories available in DAVID. Each gene set comprised

of at least 4 transcripts that shared the same GO biolog-

ical process or annotation term.

Interactome analyses

Visualization of interactions and overlays of expression

profiles were carried out using Cytoscape 2.8.2. (http://

www.systemsbiology.org). The interactome network

was obtained from all interactions with a FBS>6. The

interactome backbone contains 5760 nodes (protein–

protein and protein–DNA interactions) and 99 573

relationships between these proteins (interactions)

(Table S1). The designation of protein properties was

drawn from (Alexeyenko et al. 2010). NCBI gene name

attributes were used to unify the protein list and were

imported through the Biomart plugin. The network for

the ZF_Personality was built from within the Danio_

rerio_CS interactome. Topological analysis of individual

and combined networks was performed with Network

Analyzer, and jActiveModules 2.2 was used to analyse

network characteristics (Montojo et al. 2010; Smoot et al.

2011). GO analyses were conducted with the Biological

Network Gene Ontology (BinGO, version 2.0) plugin

(Maere et al. 2005) used for statistical evaluation of

groups of proteins with respect to the current annota-

tions available at the Gene Ontology Consortium

(http://www.geneontology.org). GO over-representa-

tion was calculated using the hypergeometric test with

Benjamini and Hochberg false discovery rate (FDR)

multiple testing correction and significance

(pFDR < 0.05). In addition, we conducted a complemen-

tary analysis with ClusterMaker cytoscape plugin

(Morris et al. 2011), using the MCL algorithm to search

protein–protein interaction network modules derived

from TAP/MAS (tandem affinity purification/mass

spectrometry). This approach clustered the network into

modules based on PE Score to indicate the strength of

the node association and given a fixed set of genes with

high protein–protein affinity (interactome cluster

nodes).

Intra-individual variance

Agilent Zebrafish V2 (G2519F) (Agilent Technologies)

arrays were used to collect individual brain transcripto-

mes for each selection strategy; proactive, reactive and

random (n = 10 each category; N = 30). The raw gene

expression data set was summarized as above. The data
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set was filtered as described above, and 2 subsets of

32 761 probes common to coping styles were used for

the comparison of intra-individual and personality vari-

ance analysis. A subset of significantly differentiated

transcripts of both coping styles (nonparametric t-test

with Benjamini and Hochberg FDR correction and

P-value cut-off of 0.01) was also used to inspect the

intra-individual and interpersonality variance. To gauge

the effect of sample size on variance, the interindividual

variance was calculated by computing CV distributions

based on individuals from each personality group.

These CV distributions were then compared between all

groups. A CV value was calculated for each detected

probe by dividing the standard deviation of its expres-

sion by its average group expression (proactive, reactive

and random selected group). Low- and high-expression

variance genes were identified as those with CV distri-

bution below and above the cut-off 1. The relationship

between standard deviation and average expression was

examined and tested for significant differences between

personalities with analysis of covariance (ANCOVA) using

expression average as the covariable.

Results

Screening for risk taking in groups

From initial screening using risk taking in groups

(n = 9/group) in a novel environment (base population

(BP); n = 206), we obtained 26% proactive individuals

(P) and 51% reactive individuals (R), and the remaining

population classified as intermediate were discarded

from the analysis. Animals were housed together as P

and R subpopulations under the same environmental

conditions. A rescreening for risk taking in groups was

performed, after 10 months, with a random sample

from the P and R populations (n = 36 animals in each

group) to test for consistency over time and context. Re-

screened animals in general were different for group

composition with the BP (v² = 37.01; d.f. = 4;

P = 0.0001). Both P and R subpopulation latencies to

exit the shelter were significantly different with the BP

(v² = 74.86; d.f. = 2; P < 0.0001 and v² = 15; d.f. = 2;

P = 0.0054), respectively. The rescreening highlights that

each subpopulation maintains at high levels the personal-

ity trait (bold/shy) selected by risk taking in groups

through time and population context (Fig. 1A). Mean

group latencies to exit the shelter were also different

between BP and P and R (Kruskal–Wallis H = 49.89;

d.f. = 2; P < 0.0001) and between BP and P, BP and R

(post hoc Dunn′s comparison: P < 0.001; P < 0.0,1 respec-

tively) reflecting the enrichment of personality in the

subpopulations. Habituation to the risk taking in groups

test over time was addressed using mean latencies

(post hoc Dunn’s multiple comparisons), and no signifi-

cant differences were observed. A significant interac-

tion between personality and time was also identified

(Kruskal–Wallis H = 201.78, d.f. = 3, P < 0.0001).

Activity test

None of the variables analysed were significantly differ-

ent between proactive and reactive fish in the first activ-

ity test. This was probably due to both technical issues

resulting from interference with the water, and the soft-

ware was unable to detect differences and also stress

induced by the experimental setup (S. Rey, pers. obser-

vation). Furthermore, recordings were in a 2 dimen-

sional space, and some important behavioural patterns,

such as vertical movement, were not detected. As a con-

sequence, we decided to make a second activity test

with a shelter to detect possible differences on vertical

use of space and decrease the stress imposed upon the

fish. However, no differences in latency to emerge from

shelter, total time in shelter and activity indices were

significant between P and R groups. However, SQR

used in total, and SQR occupancy percentages and

distribution were significantly different (one-way ANOVA,

F1,14 = 7, P = 0.019; repeated-measures ANOVA, F4,56
= 7.09, P < 0.001, respectively). A completely different

SQR use distribution between the two groups can be

observed (Fig. 1B) where P individuals have a more

homogenous distribution compared to R individuals

with a higher preference for the bottom of the tank and

spending more time in the shelter.

Mirror-image stimulation (MIS)

All variables measured: latency to realize the first

approach (LFA, one-way ANOVA, F1,18 = 14.240,

P = 0.00139**), number of bites to the image (Bite, one-

way ANOVA, F1,18 = 10.358, P = 0.00477**) and number

of aggressive behaviours (AGR, F1,18 = 75.162,

P = 0.01341*) were significantly different between P

and R individuals. Results showed that P individuals

had a shorter latency to focus the mirror image, to initi-

ate aggressive behaviour and a higher number of bites

in comparison with R individuals. FRZ behaviour

showed a marked difference between P and R individu-

als where P individuals minimally express this behav-

iour (Mann–Whitney U-test, U = 0.00, P < 0.001; see

Fig. 1C).

Latency to first feeding after a confinement event

Results showed significant differences in LRF between

P and R groups after a confinement event where P indi-

viduals always were faster to feed (one-way ANOVA;
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F1,18 = 46.785, P = 0.04425; Fig. 1C, D) than P. Again

when measuring FRZ, R individuals always spent more

time freezing (Mann–Whitney U-test, U = 27.5,

P = 0.036).

Consistency over time and context

In the context of risk taking, this behavioural trait

remained consistent in both the groups (P and R) and

over time (10 months between screenings) and context

(mixed subpopulations) (see above for results, Fig 1A).

Furthermore, across contexts, for different behavioural

tests, Spearman rank correlation analysis using all the

variables recorded across different contexts identified

some significant correlations (Mann–Whitney U-test.

* P < 0.05; **P < 0.01; Table S1). The strongest positive

correlation identified (r = 0.83, P < 0.01) was between

AGR in the MIS test and LRF on feeding measurements

on the P group of animals. For R, no significant correla-

tion was found between AGR and LRF. Curiously, a

strong negative correlation was found between LFA in

the aggression measurements and LRF (r = �0.7,

P < 0.05, Fig 2A and B) both in P and R, where LFA

always negatively correlated with all other aggression

variables measured and strongly with FRZ in the MIS

test (r = �0.82, P < 0.01) in R fish.

Morphometric comparisons between coping styles

Initial analyses for the measured morphometric vari-

ables (8 in total) and personality showed no significant

differences. However, when we incorporated both the

Fulton’s condition factor (K) into the analyses, the total

of DEO (diameter of eye orbit) length of P individuals

that ranged from 2.20 � 0.11 mm and R individuals

from 2.13 � 0.12 mm was significant (P < 0.01). This

was also repeated when using cephalic index (Ci)

where values ranged from 0.19 � 0.013 and 0.18 � 0.01

for P and R individuals, respectively. Both ratios are

significantly smaller in the R population (Fig. 2C).

P and R individual brain transcriptome analyses

Global expression profiles of whole brains from 30

wild-type zebrafish screened a priori for personality

traits were compared (proactive, reactive and random

selection). 43 602 probes scored positively for reliable

hybridization signals among all samples. 32 761 probes

passed quality control for random effects between sin-

gle-slide variability, leaving only transcripts that were

either present or marginal in all experimental arrays.

These 32 761 transcripts were used for statistical

analysis to find mRNAs with abundance levels that

significantly differed between zebrafish P and R sub-

populations. (Table S2). Under constant aquaria condi-

tions, the P and R populations exhibit different global

profiles in the brain transcriptome. Both PCA and hier-

archical cluster analysis highlighted the differences

between the brain transcriptomes where P and R popu-

lations could easily be separated, and two major clus-

ters were identified composed entirely of either P or R

individuals (Fig 3 A,B). Analysis for mRNAs that signif-

icantly differed between brains of P and R individuals

(nonparametric t-test with Benjamini and Hochberg

FDR correction and P < 0.01) identified 3027 distinct

mRNAs. These mRNAs are listed in the supplementary

(A) (B)

(C) (D)

Fig. 1 Behavioural tests for personality

analysis in a wild-type zebrafish popula-

tion (A) Percentage of individuals in each

subpopulation after rescreening,

10 months after initial screen, for risk

taking in group: BP; base population

(mixed), proactive (P) and reactive (R).

***P < 0.001. (B) Different occupancy

percentages in shelter (segment nº 5) and
square use (segments 1-4) between proac-

tive (clear grey, P) and reactive (dark

grey, R) individuals (Activity test:

repeated-measures ANOVA, F4,56 = 7.09,

P < 0.001). (C) Mean (� SE) freezing time

for P and R individuals in MIS test

(Mann–Whitney U-test, U = 0.00;

***P < 0.001). (D) Mean (� SE) of latency

to refeeding after MIS test *P < 0.05.
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data table with their expression levels and functional

annotations (Table S3a). Absolute QPCR validation data

(Figure S1) show the reproducibility of the array

measures for 5 mRNA targets identified in our analysis.

Of particular note from the set of mRNAs identified

with differential relative abundance levels, high and

low, between personalities related to key cellular pro-

cesses (Table S3b). In the following section, we high-

light some key mRNAs. We observed sets of mRNAs

with high relative abundance in R individuals suggest-

ing higher activity levels that were observed to have

low abundance in P individuals relevant to growth and

proliferation status including: type VII collagen alpha 1,

Procollagen-proline, disintegrin, metalloproteinase

domain 8, yippee-like 3, cyclin T2, progenitor cell differ-

entiation and proliferation factor b (King et al. 2004;

Lok et al. 2008; Sriraman et al. 2008; Oliver-Krasinski &

Stoffers 2008; Thangjam et al. 2009; Tuttle et al. 2011;

Umemoto et al. 2012; Marchesi et al. 2013). On the other

hand, cellular trafficking and cellular communication

function were observed to have a higher abundance in

P individuals including Na+/K+ ATPase beta, calcyclin-

binding protein, solute carrier family 25 member 47,

catenin beta 1 (Jorgensen et al. 2003; Hediger et al. 2004;

Shtutman et al. 2008; Chen et al. 2011). Both groups

imply increased cellular proliferation associated with

increased activity. Furthermore, in the high P/low R

transcript set, a significant number of related mRNAs

directly involved in regulation of circadian rhythm

including Cryptochrome 1b, Cryptochrome 2a, Crypto-

chrome 3 (Delaunay et al. 2003; Ziv et al. 2005; Tamai

et al. 2007) were observed. Interestingly, a correlated set

involved in glycolytic metabolism including isovaleryl-

coenzyme A dehydrogenase, insulin-like growth factor

1, succinate dehydrogenase (van Raamsdonk et al. 1993;

Hwa et al. 1999; Lemeer et al. 2008) were also observed.

These diametrically opposed observed abundances in

key cellular processes suggest that the underpinning

regulation of metabolism, biorhythm/cellular clock and

cellular proliferation may be dependent upon personal-

ity and reflect physiological status/requirements of the

brain in P and R individuals.

In silico analyses of brain regions and personality-
dependent mRNA abundance

To identify underlying differences in function and locali-

zation of the sets of personality-dependent mRNAs

(high and low), we tested the 3027 mRNAs for func-

tional enrichment using GO-DAVID (Table S4).

GO-DAVID identifies significant enrichment of func-

tional GO categories and localizes these groups to dis-

tinct anatomical regions within the brain including

specific cell types. 46 GO terms representing 1459

mRNAs were over-represented (Bonferroni corrected

P < 0.05). The functions identified included as expected

a wide range of biological processes (e.g. cell division,

ATP synthesis, cell adhesion, extracellular matrix

remodelling) and cell types reflecting the composition of

the brain, that is, neurons and glial cells. Although mul-

tiple brain regions can be identified, we limited our

analysis to the forebrain, midbrain and hindbrain

regions to avoid hierarchical classification issues using

the primary classification. We selected a total of 21 GO
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(B) Fig. 2 Consistency of behavioural traits

and morphometric analysis in P and R

populations (A) Within-individual Spear-

man rank correlation analysis results

(P < 0.7) for MIS and refeeding post-

stress in proactive individuals and in (B)

reactive individuals. (C) Mean � SD of

DEO/K (diameter of eye orbit/Fultons

condition factor) and DEO/Ci (cephalic

index) of proactive and reactive individu-

als; n = 68 individuals in each population

(t-test ** P < 0.01, *** P < 0.001).
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modules containing a total of 398 mRNA transcripts that

could be allocated to one of the specific selected regions

(Table S4). Transcripts that were ubiquitously distrib-

uted were removed from the analysis. In the forebrain,

we found 9 GO classes containing 167 transcripts, and in

the midbrain and hindbrain, we found 7 and 5 GO clas-

ses representing 121 and 110 transcripts, respectively.

This suggests that there is a personality-dependent

enrichment of function in distinct brain regions. Further

analysis (interaction between mRNA abundance and

personality in specific brain region) highlighted signifi-

cant interaction for personality and mRNA abundance

in the midbrain (two-way ANOVA F3, 242 = 3.916,

P < 0.049), whereas significant difference in mRNA

abundance was observed in forebrain (two-way ANOVA

F3, 354 = 3.945, P < 0.004), and in the hindbrain, no sig-

nificant differences were observed (Fig. 3C).

Zebrafish brain interactome

To further explore the functional significance of personal-

ity-dependent differences in the brain of P and R

individuals, we developed a stringent analysis using

selected clusters of transcripts that share a high protein–

protein affinity (interactome analysis). For interactome-

based analysis, we used the global network of functional

coupling for zebrafish and combined these data with our

microarray data set to create 3 personality-specific inter-

actomes of each brain region using the Cytoscape plat-

form. We identified network regions (subportions of the
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Fig. 3 Clustering and expression variance analysis of P and R brain transcriptomes (A) PCA; Factorial map of the principal compo-

nent analysis (PCA) of P and R subpopulation transcriptomes. PCA was performed on data from all common expressed transcripts

in each transcriptome represented as a single colour point for each personality. The portion of the variance explained by the principal

component is indicated in parentheses and (B) Hierarchical clustering (Euclidean distance), sample size, n = 10 individuals for each

personality. Refer to Table S2 for the annotated list of transcripts. (C) GO-DAVID analysis correlates the specific set of transcripts to

gross brain regions (forebrain, midbrain and hindbrain). Sample size, n = 167 in forebrain, n = 121 in midbrain, n = 110 in hindbrain.

Box and whiskers plots registered for each brain region (n = 10).
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full network) enriched in differentially expressed, inter-

connected mRNAs (nodes) in the forebrain, midbrain

and hindbrain. In addition to further substantiate our

models, we incorporated a protein–protein interaction

network derived from tandem affinity purification/mass

spectrometry (TAP/MAS) [ClusterMaker plugin, (Morris

et al. 2011)]. This approach clustered modules (a fixed set

of genes with high protein–protein affinity) in the net-

work by the strength of their node association. We

selected the modules with the highest representation of

node–node interactions that were found in each brain

region and conducted GO analysis with the BinGO plu-

gin (Maere et al. 2005). Three distinct predicted biological

outcomes were obtained (Fig. 4). As suggested and

supporting the previous analysis, modules with signifi-

cant differences were identified in the fore-, mid- and

hindbrain interactomes (Table S4). This analysis, by

identifying region-specific processes, further supports

the observation that personality directly affects key cellu-

lar processes in zebrafish brain.

Personality as a resolving variable for variance in gene
expression

The high level of observed natural variance in gene

expression data sets obtained within populations is a

major limitation for biological interpretation of results.

In this section, we used personality as a resolving

variable to reduce variance and therefore increase the

biological value of data obtained in large-scale measure-

ment of gene expression. As a measure of variance, we

used the coefficient of variation (CV) that is computed

for each transcript (microarray hybridization signal;

raw data) by dividing the standard deviation of its

LowHigh

Proactive ReactiveGO Description Sample Genome
Notch signaling pathway 7 49
sequence-specific DNA binding 11 217
positive regulation of cell differentiation 12 262
regulation of cell morphogenesis involved in differentiation 7 104
regulation of nervous system development 10 197
negative regulation of transcription from RNA polymerase II 11 267
DNA replication 8 191
DNA strand elongation involved in DNA replication 4 32
DNA strand elongation 4 35
hormone-mediated signaling pathway 4 27

negative regulation of cell projection organization 4 33
negative regulation of cell differentiation 8 212
cell cycle checkpoint 9 235
G1/S transition of mitotic cell cycle 7 169
M/G1 transition of mitotic cell cycle 5 79
regulation of axonogenesis 5 50
ephrin receptor activity 3 14

(A)

(a)

(b)

(c)

(B)

Fig. 4 Interactome mapping of personality-related gene networks in the zebrafish brain (A) Interactome modules of mRNAs

expressed in each brain region based in MCL algorithm (ClusterMaker plugin) a; forebrain, b; midbrain, c; hindbrain. The inserts

represent selected significant protein–protein interaction network modules expressed in the 3 brain regions. (P < 0.01). The symbols

represent specific GO processes. (B) Gene ontology analysis (BinGO plugin) of each interactome-module of overexpressed GO catego-

ries (P < 0.01), the colour scale bar indicates relative abundance (high-low) of GO categories in each personality. Sample size, n = 398

in forebrain, n = 121 in midbrain, n = 110 in hindbrain.
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measured abundance across the population by its mean

expression value. We designated a threshold value for

transcripts with a high variance as those falling above a

CV distribution of >1 and low as <1. This analysis using

CV values protects against detecting patterns in vari-

ability influenced by trends in relative expression based

upon total mean values. We used both raw (all positive

hybridization signals) and selected (personality-depen-

dent) data sets for the P, R and the control populations

(Fig. 5A, B). The distribution of expression values was

consistent across both approaches; raw data (32 761

probes) and personality-dependent (3027 probes), which

more probably reflects the high level of reproducibility

of the expression data. The absolute numbers of tran-

scripts in low and high variance categories varied

slightly, CVerror of <2% between personalities when we

used raw data (Fig 5A); however, in contrast, when

selected transcripts are used, differences are significant

where P and R data had CVs that were significantly

smaller than the random selected group (one-way

ANOVA F2, 9075 = 5.074 P < 0.05; Fig. 5B). Thus, we iden-

tified that the personality of the individual significantly

contributes to the observed biological variation within

the population. We then calculated the observed vari-

ance for each of our data sets (ANCOVA) and expressed

this as a ratio for individual transcriptome versus mean

population transcriptome. The slope of the regression

was homogeneous (Table S5), and after adjusting for

raw data, the ANCOVA revealed significant differences

between personalities with respect to both standard

deviation and mRNA abundance in the personality-

dependent data set (Table S5). The variance for P and R

individual transcriptomes was significantly smaller than

the control (Fig. 5C). The observed effect on variation in

the transcriptome attributable to each variable was 9.7%

for personality and 0.2% for gene expression (ANCOVA

on adjusted standard deviation followed by Tukey test:

a = 0.05; N = 3.026 probes Table S5).

Discussion

Resolving phenotype variation within a population in

response to environmental perturbation is central to

understanding adaptation and aims to bridge the geno-

type–phenotype gap. Such bridging of the ‘genotype–

phenotype gap’ represents a truly transversal question

spanning from biomedicine to behavioural ecology.

Unprecedented opportunities to explore the phenotype–

genotype gap from distinct biological perspectives have

been unlocked by the genomics and system biology dis-

ciplines. Genomics driven ‘big data’ has provided an

incomparable set of resources for biologists, and the

main focus, highlighted in humans by initiatives such

as HapMap (International HapMap Consortium et al.

2007), ENCODE (Birney et al. 2007) and the 1000

Genomes Project (Clarke et al. 2012), is now upon how

nucleotide sequences drive specific traits and the

genetic basis of phenotypic variation. In parallel to this

exciting progress, the measurement of gene expression

(functional genomics) has been greatly facilitated by the

increasing availability of transcriptomic technologies

including microarray and RNA-Seq methodologies.

Gene expression is a complex trait that is influenced by

cis- and trans-acting genetic and epigenetic variation
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Fig. 5 Animal personality partially dis-

criminates expression variance in tran-

scriptomes. (A) Whole-brain transcriptome

(all data, n = 32.761) coefficients of varia-

tion for individual transcripts for pro-

active, reactive and random (base

population) selected individuals, CV

distribution was set as >1 high and low

as <1. (B) Personality-dependent (Pd,

n = 3.027) coefficients of variation for

proactive, reactive and random (base

population) selected individuals, CV dis-

tribution was set as >1 high and low as

<1. (C) Observed variance for all data

and Pd data sets (ANCOVA) expressed as a

ratio of individual transcriptome versus

mean population transcriptome.
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and also by environmental factors. Relating meaningful

adaptive changes at the level of the transcriptome

requires the identification processes that have a func-

tional significance for the individual. This remains a

major objective towards understanding the complex

interactions between environmental demand and an indi-

vidual’s capacity to respond to such demands. The inter-

pretation of such interactions and the significance of

biological variation between individuals from the same

or different populations remain a difficult and under-

addressed question (Whitehead & Crawford 2006b).

Although such studies have tremendous potential for

unravelling in broad terms how patterns of gene expres-

sion change, questions have been raised about how dif-

ferences in the transcriptome are related to adaptive

phenotypic variation (Whitehead & Crawford 2006a).

Although the concept of ‘variation’ is well accepted

throughout the biological sciences, we remain in a para-

digm that in biological systems, important differences

between groups, identified by specific measureable

parameters, are defined by significant average differ-

ences. However, this view, that is, reduction of expres-

sion heterogeneity has been challenged on numerous

occasions and is counterintuitive if the aim is to under-

stand adaptive phenotypic variation (Raser & O’Shea

2005; Rockman & Kruglyak 2006; Leek & Storey 2007;

Mar et al. 2011). Variation in gene expression may arise

due to multiple additive factors including cis- and trans-

acting genetic variation, polygenic interaction, epigenetic

modification and environmental factors. A significant

body of evidence using a number of molecular

approaches highlights that interindividual variation in

gene expression within a population is common through-

out the vertebrates (Stamatoyannopoulos 2004) and in

humans may contribute to differences in disease suscep-

tibility and other disorders. This variation is considered

to represent a major source for phenotypic variation and

has been shown to be tissue and tissue-region specific in

both fish (Whitehead & Crawford 2005; Crawford &

Oleksiak 2007) and mammals (Sandberg et al. 2000; Bray

et al. 2003). A range of estimations of the actual contribu-

tion to variation from different animal models runs

approximately from 10 to 30% (Stamatoyannopoulos

2004). It is accepted that much of this variation is the

result of cis-acting influences on gene expression where

allele-specific polymorphism in cis-regulatory regions is

more probably a major determinant (Pastinen 2010). Fur-

thermore, evidence now points towards variance as a key

element in information flow across gene networks, and

this has been suggested to be a major driver for disease

susceptibility (Mar et al. 2011). It has been proposed that

epigenetic variation via variable methylated regions

(VMRs) plays a key role in disease susceptibility within a

population and a predictive model highlighted affected

evolutionary fitness (Feinberg & Irizarry 2010). Thus, to

understand the underlying mechanisms for adaptation, it

is necessary to address phenotypic variation within a

population.

It is becoming increasingly recognized in the field of

behavioural ecology that consistent interindividual vari-

ation in behaviour, known as animal personality, may

represent an important source of phenotypic variation

contributing to the adaptive potential within a popula-

tion (Dingemanse et al. 2010; Dall et al. 2012). Animal

personality is considered as a suite of behaviours that

are consistent over time and context and coping style

as a set of physiological and behavioural responses to

external stressors (Dingemanse et al. 2010). In essence,

both personality and coping style are directly related

representing studies at different scales of biological

research to the same question; understanding adapta-

tion. Therefore, in this study, we use animal personality

following consensus opinion in the current literature

(Dall et al. 2012). Our results screened for animal per-

sonality using risk taking in groups of zebrafish (Danio

rerio) as an a priori screen generates in comparison

with individual studies more robust data (Sih et al.

2004; MacKenzie et al. 2009; Huntingford et al. 2010).

Individual tests, especially involving isolation, pro-

voked stressful physiological responses, that is, freezing

over extended periods and contribute to observed vari-

ation in our intra-individual tests. Low correlations

between tests at the individual level and low sample

groups may favour artifactual bimodal distributions

(Budaev et al. 1999; Budaev 2010). Such procedures are

commonly used in personality tests including activity,

exploration, novel environment, novel object or confine-

ment and stressors resulting from these tests such as an

inadequate environmental context may confound

results (Killen et al. 2013). Risk-taking tests performed

in groups over an extended time period (10 months)

that incorporates normal environmental variation in the

aquaria highlighted a consistent response over both

developmental stage and social context as the P and R

subpopulations were maintained separately over this

period (both P and R were significantly different on

latencies to exit the shelter, and only 8% of P fish were

found in the R group after 10 months). Thus, bold–shy

behaviour remained stable over time and under differ-

ent social contexts. After rescreening for risk taking,

individuals from P and R subgroups (n = 20; 10 ani-

mals of each group) were tested for activity, aggression

and feeding recovery after stress. Overall consistency

was mostly significant, and a group syndrome was

detected. Animals classified as P in group screening

tests were more active, distributed homogeneously

throughout the tank, performed more aggressively

in the MIS test and reassumed feeding faster after a
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stressful event. On the contrary, R fish spend more

time either in shelter or in freezing behaviours, prefer-

entially occupied the bottom of the tank and were less

aggressive and slower to eat after a stressful event.

Aggressive behaviour, latency to first approach in the

MIS test and latency to begin feeding after confinement

provided the best correlation in P individuals, within

the subpopulations. We were also able to correlate indi-

vidually some behavioural measures on the tests per-

formed. We detected, in proactive fish, a feeding and

aggression syndrome: animals with shorter latency to

reassume feeding (LRF) were strongly correlated

(r = 0.83, P < 0.05) with general aggressive behaviours

but negatively with LFA (r = �0.78, P < 0.05) Surpris-

ingly, first focused attack seems to be a measure that

correlates negatively with all other aggression variables

measured (number of bites: r = �0.60 and aggressive

behaviours: r = �0.83). R showed similar positive

results in aggression and feeding tests with animals

that resumed feeding faster spending less time freezing

(r = 0.72) and the contrary. Thus, indicating higher lev-

els of stress-related behaviours in these R individuals

probably constrained their responses in other contexts

(Martins et al. 2011). Also, LFA correlated negatively

with LRF in R animals where first latencies were 10

times higher than the P fish. Limitations in the analysis

more probably due to small sample size were detected,

but basically, the consistency of observed behaviour

across this suite of tests and contexts produced results

similar to those described for proactive–reactive person-

alities (Wilson et al. 1994, Koolhas et al. 1999, R�eale and

Festa-Bianchet, 2003; Korte et al. 2005) for mammals

(including humans) and other vertebrate groups includ-

ing several other fish species (Felicity Ann Huntingford

1976, Øverli et al. 2007). Some contradictory results

reflected the impossibility to decide upon the validity

of the data where only the comparisons between the

groups of individuals were clearly different, whereas

within-individual comparisons in different contexts

were not different. This observation is similar to that

recently reported by Garamszegi et al. (2013). Therefore,

we used individuals from the original P and R popula-

tions initially screened for risk taking in groups (n = 10

per personality and 10 controls; N = 30) to carry out

individual brain transcriptomic analyses under stable

environmental conditions to probe phenotypic variation

within our zebrafish population.

The 9.7% reduction in variance that corresponds to the

cohort of 3026 distinct mRNAs that are personality-

dependent are expected to be directly related to

underlying differences in genome regulation within the

population. Taking into consideration the limitations of

microarray analyses, that is, the influence of allelic varia-

tion, it is more probably a considerable portion of this

observed dependence is related to both cis- and trans-

acting determinants of gene expression and epistatic

interactions. Recently, bold–shy behaviour was shown to

have a strong heritable component in zebrafish (Oswald

et al. 2013; Ariyomo et al. 2013), and we produced simi-

lar data (Vargas et al., unpublished data). Thus, a signifi-

cant genetic component can be expected although as all

fish cohorts were reared in a common environment, we

cannot discard the possibility that epigenetic regulation

during development may be different between distinct

personalities, and this may contribute to the observed

differences in the brain transcriptome (Feinberg &

Irizarry 2010; Killen et al. 2013). In this study, we have

shown that there are significant differences in mRNA

abundance related to both function, as described by

interacting gene modules, for example, notch pathway,

cellular clock and cellular proliferation/differentiation,

and location, distinct brain regions, where specific func-

tions are controlled within the brain and a portion of the

observed variation is personality-dependent. Differences

in brain region-specific gene expression has been shown

to contribute to differences in behavioural profiles

between different populations of in-bred mouse strains

(Sandberg et al. 2000). Importantly, this is the first time

that strong correlations between functional modules con-

taining significant protein–protein affinities and person-

ality have been made in individuals sourced from a

wild-type genetic background. Interestingly, differences

in the physiological functions identified by our analyses

have been independently reported to contribute differ-

ences in animal personality (Careau et al. 2008; Hunting-

ford et al. 2010). This encouraging support brings

forward the possibility that a significant contribution to

animal personality potentially through cis- and trans-

driven regulation of gene expression is identifiable in

our model. Although a significant portion of variation in

expression heterogeneity can be resolved using a priori

personality screening, the complexity of confounding

factors such as epistasis, pleiotropic and environmental

influence must not be ignored (Bray et al. 2003; Elmer &

Meyer 2011).

Our data supported at different levels of analysis

suggest that the inclusion of behavioural screening prior

to a molecular analysis has the potential to identify

important interactions that are more probably highly

relevant towards understanding the underpinning

molecular framework of adaptive variation that is

expressed as an individuals’ phenotype. Such interac-

tions cannot be identified by a standard average mean

approach within or between populations; thus, the bio-

logical significance of measured observations is more

probably weakened or may in fact be misleading. In

conclusion, the use of a priori screening with robust

models of animal behaviour such as personality in a
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coherent environmental context may provide a map

towards understanding the underlying complexity of

adaptive phenotypic variation in the genomic landscape.
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