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Elucidating the molecular and neural basis of complex social

behaviors such as communal living, division of labor and

warfare requires model organisms that exhibit these multi-

faceted behavioral phenotypes. Social insects, such as ants,

bees, wasps and termites, are attractive models to address this

problem, with rich ecological and ethological foundations.

However, their atypical systems of reproduction have hindered

application of classical genetic approaches. In this review, we

discuss how recent advances in social insect genomics,

transcriptomics, and functional manipulations have enhanced

our ability to observe and perturb gene expression, physiology

and behavior in these species. Such developments begin to

provide an integrated view of the molecular and cellular

underpinnings of complex social behavior.
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Introduction
Social behavior encompasses a diversity of interactions
between members of the same species, including courtship,
aggression, aggregation and migration. Genetically accessi-
ble model organisms, such as Drosophila, C. elegans and mice,
have been used to study the molecular basis of social
behaviors such as courtship and aggression [1,2]. However,
several social animals, including humans, exhibit more
sophisticatedinteractionsand establishhierarchical societies
in which individuals assume specific responsibilities that
contribute to the success of the group. The molecular,
neuronaland physiological mechanisms bywhich such social
structures are established are poorly understood.

Social insects have been valuable models to understand
the behaviors of complex animal societies, principally

from ethological and ecological perspectives. Unfortu-
nately, the long generation time of most social insect
species and the difficulty of controlled breeding in the
laboratory (Table 1) have prevented classical genetic
analyses of their behaviors. Progress in social insect
genomics and transcriptomics, as well as gene manipula-
tion technologies such as RNA interference (RNAi), now
offer opportunities to use these insects to study how
genetic and environmental contributions interact to con-
trol societal organization.

In this review, we first present a primer on social insects,
and then discuss how methodological advances drawn
from a range of recent observational and functional stu-
dies have increased our understanding of social insect
behavior.

A primer on social insects
The major organizing principle of ant, bee, wasp and
termite societies is reproductive division of labor: one or a
few queens specialize in reproduction while the workers
(which are all females in ants, bees and wasps) participate
in co-operative tasks such as building the nest, collecting
food, rearing the young and defending the colony
(Figure 1 and Table 1). While there is tremendous
variation in many aspects of social biology ([3]; Table
1), a central issue is to understand the process of caste
determination, whereby genetically identical individuals
develop into queens or workers, and if the latter, what
type of worker. Caste determination was assumed to
depend on environmental factors (e.g. nutrition, phero-
mone exposure, temperature), but increasing evidence
exists for genetic factors affecting this process in several
species [4,5!,6]. Worker castes, such as ‘nurse’ and ‘for-
ager,’ are not fixed, however, as individuals can change
their behavioral states over the course of their lives (age-
related behavioral maturation, or polyethism) [7,8].

Early investigations of social insect physiology character-
ized the relationship between caste determination and
hormone levels. For example, in ants, high levels of
juvenile hormone (JH) in a larva correlate with its de-
velopment as a queen [9,10], as well as differentiation as a
major worker in species with distinct morphological
worker castes (Figure 2) [11!,12,13]. In honeybees and
ants, increasing JH level (naturally, or with JH analogs)
causes individuals to cease brood care, leave the nest, and
begin foraging (Figure 2) [14–17]. What induces these
endocrine changes and how they exert their effects are
largely unknown.
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Physiological and molecular correlations of
social insect behavior
How members of a colony co-ordinate their behavior has
been addressed by neurochemical, neuroanatomical
and — more recently — molecular approaches. Physio-
logical and anatomical studies have focused on detection
of pheromones and other environmental chemicals.
Visualization of odor-evoked neuronal activation and
plasticity in insect brains was pioneered in the honeybee,
favored by its relatively large head (Table 1) [18–20]. The
neurophysiology and anatomy of the ant olfactory circuits
are also beginning to be explored [21–28]. Comparisons of
the olfactory pathways between different castes of ants
and honeybees have provided some information on how
representation of the same stimulus may differ between
colony members [24,25,29]. However, understanding the

functional significance of these distinctions will require
more specific knowledge of the pheromone signals, the
receptors that recognize them, as well as technical inno-
vations to precisely manipulate the functions of the
neural circuits.

In the last few years, the molecular basis of social organ-
ization has begun to be deciphered through comparative
genomics made possible by the sequencing of one bee,
three wasp and seven ant species [30–39]. Exploitation of
this wealth of information has only just started, but some
interesting features are already appearing. For example,
all annotated ant, bee and wasp species have several-fold
more odorant receptors than most solitary insects (Table
1), suggesting that enhanced olfactory abilities may con-
tribute to complex social organization.
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Figure 1
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Schematic of a ‘typical’ life cycle of a social insect colony. After mating (top), a founding queen chooses a suitable site for the nest and begins laying
eggs, which she nourishes from her own body reserves. These eggs will produce the first workers who differ significantly in morphology, physiology
and lifespan from the queen, and who assist the development of the young colony by foraging and tending to new eggs, larvae and pupae. Over
months or years, the number of workers in the colony increases, and eventually the founding queen begins to produce new queens and males. These
reproductive individuals fly out of their respective colonies in a co-ordinated manner to mate. Many species-specific variations on this cycle exist: for
example, in social Hymenoptera (ants, bees, wasps), males die shortly after mating, while in termites the male and female reproductives found the
colony together as king and queen.
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Gene expression profiling in social insect brains has
revealed that differences in behavior among workers from
the same colony are associated with widespread (several
1000) gene expression differences [40,41,42!,43–46].
Most of this work has been conducted in honeybees,
where microarrays have been used to identify genes
differentially expressed between nurses and foragers,
and between inbred honeybees lines that differ in their
aggressiveness. The most robustly differentially
expressed genes in nurses and foragers are part of lipid
and sugar biosynthesis and degradation pathways. This
observation is consistent with both the changing sugar
and lipid levels measured during the maturation of nurses
to foragers [47!,48,49], and the close relationship between
JH and metabolism in other insects [50,51].

One global finding of these expression experiments was
the existence of transcriptional regulatory network
modules (i.e. groups of co-regulated genes controlled
by similar transcription factors) associated with matu-
ration, aggression and foraging [42!]. While some net-
work modules are unique to social insects, others show
high overlap with known Drosophila transcriptional net-
works. For example, aggressive behavior in both bees and
fruitflies appears to be controlled by the same transcrip-
tion factor network, spearheaded by the gene Deaf1 [45].
Intriguingly, a second network controlled by Ultraspira-
cle — one of the nuclear receptors for JH (and other
insect hormones) that regulates larva-adult transitions
in Drosophila — also controls behavioral maturation
and foraging in honeybees. This finding provides an
example of co-option of an ancestral insect developmental

pathway for modulation of behavior changes in social
insects [52].

There is little information on the mechanisms underlying
differences in gene expression among castes and beha-
vioral groups. Epigenetic modifications are attractive
candidates as these could be directly modulated by
environmental factors, such as nutrition or stress
[53,54]. An analysis of the distribution of methyl cytosines
(a well-known epigenetic mark) in the brains of honeybee
queens and workers using shotgun bisulfite sequencing
revealed that most methylation occurs in highly con-
served genes [55]. Approximately 10% of these genes
were differentially methylated between queens and
workers, indicating that this DNA modification may be
an important mechanism of caste determination. Closer
examination of the distribution of methyl cytosines
within the differentially methylated genes revealed a
concentration around alternatively spliced exons, hinting
that this epigenetic mark influences expression of caste-
specific transcripts. Similar observations were made in the
methylomes of several ant species [56,57]. One study also
identified cases of monoallelic methylation associated
with allele-specific expression [56]. Some of these cases
were caste-specific, hinting at the possibility of parental or
caste-specific imprinting as a mechanism to specify caste
identity.

Perturbations of social insect physiology and
behavior
Although precise genetic manipulations are not yet feas-
ible in social insects, several other types of experimental

6 Neurogenetics

Figure 2
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Morphological and behavioral development in social Hymenoptera. Sex is determined through ploidy level. Among the diploid females, queen versus
worker fate is affected mostly by environmental factors, and appears to be related to juvenile hormone (JH) levels: the larvae that develop into queens
typically have higher JH titers than worker larvae. In species with distinct morphological worker castes, larvae of major workers also have more JH than
larvae of minor workers. Most social Hymenoptera also exhibit age-related polyethism, where young workers with low JH levels engage in brood care
as nurses but as they age the titers of JH increase and there is a transition to foraging behavior.

Current Opinion in Neurobiology 2013, 23:3–10 www.sciencedirect.com



perturbation have been employed. An initial approach
was to ask how a colony reacts to societal disruption. For
example, when all foragers are removed from an ant or
bee colony, there is a rapid behavioral shift, with pre-
viously specialized nurses beginning to forage [15].
Despite important age and genetic influences on an
individual’s behavior, such experiments reveal significant
flexibility at the level of the colony, with individuals
assuming tasks that are in greater demand. Importantly,
the shift to foraging is accompanied by an increase in JH
titer [14,58] and changes in brain gene expression levels
toward patterns typical of foragers [40].

Given the numerous correlations between hormone
levels and caste determination among groups of workers,
pharmacological manipulation of hormones or their sig-
naling pathways has been a logical and fruitful avenue to
test causality between endocrine function and worker
development and behavior. The molecule most used is
a JH analog, methoprene [59]. When applied to ant or bee
larvae, methoprene treatment promotes queen and/or
major worker developmental fate, depending on the time
of application [9,10,13]. Methoprene treatment of adult
honeybee workers also induces a transition to foraging [8],
and brain structural changes typically associated with
behavioral maturation [60]. Methoprene was also used
to demonstrate that JH increases both fertility and the
likelihood of a transition to foraging behavior in the
primitively eusocial Polistes wasp [61!].

Another avenue to study the regulation of behavior in
colonies is to appropriate the pheromones involved in
colony communication. In the termite Reticulitermes sper-
atus, queens produce a pheromone that inhibits the
differentiation of new fertile females. This pheromone
is predominantly composed of two chemicals, n-butyl-n-
butyrate and 2-methyl-1-butanol [62!]. Synthetic versions
of these molecules are sufficient to inhibit queen differ-
entiation [62!,63]. Surprisingly, the same two volatiles are
also emitted by eggs and can attract sterile workers. How
this termite pheromone acts both to suppress fertility
recruitment and to control worker recruitment remains to
be determined. However, genomic resources in other
species, notably the honeybee, have facilitated identifi-
cation of the receptors and downstream cellular/molecular
targets for their particular pheromone cues [44,64], and
sequencing of the termite genome should offer similar
access.

To perturb gene function directly, RNAi has emerged as a
powerful technology. Typically, double-stranded RNA
(dsRNA) corresponding to the gene of interest is either
injected into the adult abdomen or fed to the entire colony
[65,66]. In many insects, dsRNA persists over time
and over developmental transitions, indicating that it func-
tions systemically [67,68]. However, the efficiency of
RNAi is gene-specific, tissue-specific and species-specific,

requiring careful validation controls. RNAi has been
employed in bees [47!,65,69–71], wasps [72], ants [73]
and termites [66,74!!,75]. One recent study in honeybees
used single and combined RNAi against JH esterase
(which degrades JH), Vitellogenin (an endocrine factor
that antagonizes JH action) and/or the putative JH receptor
Ultraspiracle to show how JH and Vitellogenin levels may
co-ordinately modulate gustatory sensitivity and metab-
olism underlying changes in food preferences [47!].

Many genes implicated in social behavior are not genetic
novelties of social species but have been co-opted from
ancestral pathways also present in solitary insects (e.g.
Ultraspiracle, described above). Thus, studies in other
model systems provide useful information to understand
the biology of social insects. For example, scouting beha-
vior in honeybees — in which individuals seek novel food
sources or nest sites — is controlled by conserved neuro-
transmitter systems (e.g. catecholamines) that are impli-
cated in similar ‘novelty-seeking’ behavior in C. elegans
and humans [41,76]. Beyond such general homologies,
experimentally tractable model systems can be employed
to characterize the function of particular molecules. This
approach is illustrated by a study of royalactin, the protein
in royal jelly responsible for the development of honey-
bee larvae into queens [77!!]. Remarkably, feeding of
royalactin to Drosophila melanogaster larvae induced their
development into adults with several ‘queen-like’ charac-
teristics: larger size, more rapid development, and
increased fertility. Harnessing the genetic knowledge
and tools in the fruit fly, royalactin was shown to exert
these effects through activation of Epidermal Growth
Factor Receptor (EGFR) signaling in the fat body, with
evidence that EGFR influences body size through the
p70 S6 kinase, developmental rate through the Mitogen
Activated Protein Kinase and ovary development by
increasing JH levels. Importantly, the relevance of these
findings was confirmed by RNAi of homologous honey-
bee genes. Whether ‘queen-like’ Drosophila also displays
altered behavior as a result of rich nourishment remains
an intriguing question.

Conclusions and perspectives
Molecular approaches are revolutionizing our under-
standing of the biology of social insects, permitting both
observation and testing of causal relationships between
genes, environmental influences and behavior. We close
by considering three priorities for experimental devel-
opment to allow further advances in our understanding of
social behavior in these organisms.

The first is in vivo manipulation of gene function. While
RNAi is proving useful, it is limited in spatial and
temporal resolution. Heritable transgenic manipulation
of social insects with Zinc-Finger Nucleases or TALENs
[78,79] remains a distant goal, but short-term, tissue-
specific transgenic manipulation using viral vectors may
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be possible [80]. Initial progress in introducing exogenous
DNA elements into neurons using baculoviruses has been
reported in the honeybee [81]. Once the (significant)
hurdle of efficient and selective in vivo DNA transform-
ation is overcome, the experimental potential for anatom-
ical tracing, physiological recording, gene inhibition and
misexpression is enormous.

Second, the relative ease of genome sequencing should
be further exploited for both cross-species comparisons
and finer-scale analyses. One interesting application will
be to identify the genetic basis of natural social poly-
morphisms. An excellent candidate for study exists in the
fire ant, Solenopsis invicta, where a single Mendelian-
inherited locus controls whether a colony will tolerate
one queen or multiple queens [82,83]. We note that
important behavioral genetic insights in Drosophila and
C. elegans have come from identification of loci underlying
natural behavioral polymorphisms [84,85].

Finally, our ability to explain and manipulate social
behavior will only be as good as our ability to observe
and measure it. High-resolution, quantitative analysis of
behavior in social insect colonies will be necessary, and
this requires the recognition of distinct individuals. Auto-
mated tracking systems developed for Drosophila [86] are
not practical for social insects because workers live in too
high densities and frequently walk on top of each other,
resulting in mixed identities. Radio-frequency identifi-
cation systems have been used to recognize individual
ants and wasps passing at given locations [87,88]. While it
is useful to study who is foraging in a colony or whether
individuals visit foreign nests, such systems do not permit
study of an individual’s behavior or infer who is interact-
ing with whom in a nest. A new system based on fiducial
identification labels that allow automated video-tracking
of all the individuals in a colony over long periods of time
has been developed (D. Mersch, A. Crespi and L. Keller,
unpublished). This system may allow characterization of
individual and group behaviors of social insects reared in
two-dimensional nests, such as ants. The possibility to
combine precise quantitative behavioral data with social,
pharmacological and gene expression manipulations
promises to reveal previously unattainable insights into
the molecular and cellular basis of social insect behavior.

Note added in proof
After this review was accepted, a comprehensive phylo-
genetic and expression analysis of chemosensory recep-
tors in two ant species was published [94].
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