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Antibiotic resistance has largely been studied in the context of

failure of the drugs in clinical settings. There is now growing

evidence that bacteria that live in the environment (e.g. the soil)

are multi-drug-resistant. Recent functional screens and the

growing accumulation of metagenomic databases are

revealing an unexpected density of resistance genes in the

environment: the antibiotic resistome. This challenges our

current understanding of antibiotic resistance and provides

both barriers and opportunities for antimicrobial drug

discovery.
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Introduction
It was never anticipated that treatment of infectious dis-
eases would remain a challenge over three quarters of a
century following the serendipitous discovery and subse-
quentclinical implementationofpenicillin, an introduction
that launched the ‘GoldenAge’of antibiotics.Yet, despite a
diverse arsenal of chemotherapies, bacterial infections
continue to be one of the leading causes of morbidity
andmortalityworldwide, attributed in part to the evolution
and dissemination of antibiotic resistance genes.

Resistance has posed numerous clinical challenges. Anti-
biotic misuse and overprescription, among numerous
other factors, have served as a driving force influencing
the selection and dissemination of resistance. As a result,
a plethora of diverse resistance mechanisms have been
identified, and in many cases, multiple resistance mech-
anisms to a class of antibiotic have emerged in pathogens,
compounding the problem [1,2].

It is becoming increasingly evident, however, that environ-
mental forces have greatly impacted the determinants

that have emerged clinically. Among the first to be recog-
nized publicly was the impact of the agricultural use of
antibiotics as animal growth promoters. Since the 1940s
and until the past decade, the extensive use of antimicro-
bials at subtherapeutic levels has not only been shown to
select for resistance to antibacterial agents [3] but also
bacterial DNA contamination from crude antibiotic prep-
arations often used in such applications has been found to
contain resistance determinants [4]. This use of antibiotics
in agriculture has resulted in the spread of strains such
as vancomycin-resistant enterococci in both farm animals
exposed to antimicrobials and humans in contact with the
animals [3,5], and has been directly linked to the devel-
opment of drug-resistant infections [6–8].

Traditional approaches to antibiotic resistance have
involved extensive research of human pathogens, limiting
efforts to only clinically identified mechanisms. Consid-
ering the growing body of evidence suggesting that
clinical resistance is intimately associated with mechan-
isms found environmentally, there is a clear need to
expand the focus to include nonpathogenic organisms
in antibiotic research. In doing so, it may be possible to
establish strategies to predict resistance before it emerges
clinically as well as develop diagnostic techniques and
therapeutic strategies to counteract resistance before
emergence in pathogens.

This review will examine antibiotic resistance in the soil,
the ecosystem where antibiotic synthesis probably origin-
ally evolved, as a means of both understanding the origins
of clinically relevant mechanisms and rationally predict-
ing mechanisms that may emerge in the future in clinical
pathogens. In addition, we will make a case for the
importance of expanding the study of resistance to broad
environmental locales in order to attain a more compre-
hensive understanding of the prevalence and diversity of
resistance worldwide.

Antibiotic producing bacteria: a reservoir
and putative origin of resistance
determinants
Inhabited by up to 109 microorganisms/g [9], the diversity
of microbial life concealed within the soil has been
explored in the search for new clinical and medicinal
applications. Unarguably the most significant application
to date has been the implementation of natural product
antibiotics, a discovery that has revolutionized our
approach to treating infectious diseases. Over 80% of
antibiotics in clinical use originate from soil bacteria, either
directly as natural products or as their semi-synthetic
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derivatives [10]. The Actinomycete class of bacteria, in
particular, is responsible for the synthesis of the vast
majority of these clinically important compounds.

The evolution of sophisticated mechanisms of chemical
warfare by soil microorganisms has had numerous
implications. First of all, it has required the coevolution
of mechanisms of self-protection in antibiotic producers,
evidenced by the frequent presence of associated resist-
ance genes in or flanking antibiotic biosynthetic gene
clusters [11,12]. Secondly, in a powerful example of
natural selection, other prokaryotes that inhabit similar
niches have evolved or acquired resistance. This exten-
sive coevolution of antibiotic biosynthesis and resistance
suggests a possible origin of many clinical resistance
determinants, as numerous mechanisms in soil bacteria
and human pathogens are identical.

Exploring the soil antibiotic resistome
The concept of the soil as a location of antibiotic
resistance determinants, particularly those harboured
in antibiotic producers as self-protection mechanisms,
has been acknowledged for decades. However, mechan-
istic commonalities between clinical pathogens and soil
inhabiting organisms were not shown until the 1970s. In
1973, two molecular mechanisms of aminoglycoside
resistance in soil-dwelling actinomycetes from the
genus Streptomyces were determined to be identical to
those in clinical pathogens [13!]. These strains, produ-
cers of the aminoglycosides kanamycin and neomycin,
were capable of drug modification by acetylation and
phosphorylation, respectively as a means of self-protec-
tion [13!].

Since then, numerous parallels have been identified
between determinants in soil actinomycetes and those
in clinically important strains, with respect to both mol-
ecular mechanism and protein homology. The most strik-
ing example is that of the glycopeptide antibiotic
vancomycin, still considered an important clinical drug
of last resort. Clinical resistance is mediated by the
reprogramming of the drug target, the D-Ala-D-Ala ter-
mini of cell wall peptidoglycan, to one with a significantly
lower affinity for vancomycin [14]. This is most com-
monly accomplished by three proteins, encoded by the
vanHAX cluster of genes. Six years after themechanism of
pathogenic strains was elucidated, it was discovered that
not only was this strategy identical to those in glycopep-
tide producing soil actinomycetes, but primary amino acid
sequence homology was also apparent between the
associated VanHAX resistance proteins [15!].

Parallels have also been identified in non-antibiotic pro-
ducing soil bacteria, strains whose determinants have
evolved a means other than self-protection. This
phenomenon has been observed in both actinomycetes
and non-actinomycetes, as evidenced in the case of

vancomycin resistance in Streptomyces coelicolor and Pae-
nibacillus spp., respectively [16!,17!].

In recent years, approaches have been implemented to
characterize the diversity and prevalence of resistance in
soil bacteria — the soil antibiotic resistome — as an
important reservoir of resistance [18]. Riesenfeld et al.
investigated resistance in the soil, concentrating on uncul-
turable organisms, bacteria that have yet to be character-
ized and thus underappreciated because of challenging
culture conditions [19!]. By creating a functional metage-
nomic library [20] inwhich clonedgenomic fragmentswere
expressed fromDNA isolated directly from soil and select-
ing for resistance, traditional challenges associated with
studying genes of unknown sequence were circumvented.
Specifically, these functional analyses revealed novel anti-
biotic resistance proteins that were previously of unknown
function andunrecognizable by sequence alone.Thus, this
work not only allowed for the identification of aminoglyco-
sideN-acetyltransferases, theO-phosphotransferases, anda
putative tetracycline efflux pump but also a construct with
a novel resistance determinant to the aminoglycoside
butirosin [19!]. This work shows the power of the func-
tional metagenomic approach when applied to a search of
activity with a highly selectable phenotype such as anti-
biotic resistance.

Focusing on agriculturally associated resistance, Schmitt
et al. characterized the diversity of tetracycline resistance
determinants in soil [21!]. Using PCR-based approaches,
three resistance genes were ubiquitously identified in the
soil, and an additional five were found in manure-supple-
mented soils. This work speaks to the diversity of tetra-
cycline resistance in agricultural soils.

To explore the soil resistome from an evolutionary
perspective, D’Costa et al. established a systematic
approach to characterize resistance in actinomycetes as
a means of anticipating new mechanisms of resistance
that may emerge clinically in the future [22!]. By con-
structing a morphologically diverse library of hundreds of
spore-forming actinomycetes and screening for resistance
to a collection of 21 natural product, semi-synthetic and
synthetic antibiotics, this work was the first to attempt to
quantify the phenotypic density of resistance in any
subset of soil organisms. The phenotypic density of
resistance and diversity of the resulting profiles were
greater than ever anticipated, with strains resistant to
an average of seven to eight antibiotics. In addition, this
work identified a wealth of antibiotic inactivating
enzymes, including novel mechanisms of resistance to
the recently approved antibiotics telithromycin and dap-
tomycin [22!].

As a whole, the study of resistance in soil bacteria is
rapidly gaining recognition as an important reservoir from
which many clinical parallels can be drawn. Further
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studies on a more diverse subset of strains, as well as
approaches to study slow-growing strains and those diffi-
cult to culture will be important to uncover the true
extent of the soil resistome.

Acquisition of resistance to antibiotics:
horizontal gene transfer
Genetic transfer among bacteria probably accounts for
much of the spread of resistance. This process, known as
horizontal gene transfer (HGT) often confers new meta-
bolic capabilities to the recipient, allowing its adaptation
to new ecological niches.

Exogenous DNA is usually acquired by bacteria through
transformation, conjugation and transduction. It is then
possible to either integrate the new genetic material into
the recipient’s chromosome or replicate independently.
The mobile genetic elements mediating HGT consist of
plasmids and transposons and the related gene integrating
integrons. Plasmids, circular double-stranded DNA mol-
ecules harbouring genetic determinants, are capable of
replicating independently of the bacterial chromosome.
Transposons are flanked by inverted repeat sequences
and encode transposases, enzymes that introduce nicks at
the ends of these elements to allow for integration at
insertion sequences, sites which are normal constituents
of bacterial chromosomes and plasmids. Transposons can
carry multiple gene cassettes and participate in gene
mobilization within a chromosome. The mobility of a
transposon can increase if it cointegrates into a plasmid
which is then transmitted to other cells by conjugation
or transformation. Integrons are assembly platforms
which incorporate genetic material through site-specific

recombination and contain within a promoter for expres-
sion. An integron-encoded integrase carries out the
assembly of tandem genes or gene fragments at the attI
primary recombination site. Although intergenic re-
arrangements are possible, integrons are essentially
immobile in the chromosome unless associated with a
transposon [23]. Evidence of these genetic elements, or
their remnants, have been identified in all available
prokaryotic genomes [24].

Mobile genetic element-associated transmission of anti-
biotic resistance determinants is probably responsible for
the dispersal of at least some streptogramin B lyases
(further discussed in the next section), responsible for
antibiotic resistance by means of drug inactivation. As
illustrated in Figure 1, analysis of the genetic environ-
ment of genes encoding putative lyases (vgb) in many
instances reveals the presence of mobile elements such as
transposases upstream or downstream of the gene of
interest. Often in these instances, multiple resistance
determinants can accumulate on a mobile element and
upon transmission contribute to multi-drug resistance. In
this case, vgb is often in close proximity to the resistance
determinant vat, associated with resistance to type A
streptogramins. Thus with respect to antibiotic resist-
ance, the presence of mobile genetic elements can play
a powerful role in the transmission of resistance between
bacterial strains.

Expanding the resistome: exploring
environmental diversity
With respect to environmental resistance to antibiotics,
this ability is not simply restricted to soil-dwelling
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Figure 1

Schematic diagram of vgb genetic environment. Putative streptogramin B lyases (vgb) are coloured in turquoise, and putative streptogramin A
acetyltrasferases are in pink. The presence of putative facilitators of gene mobilization (e.g. transposases) is represented by green boxes. Note
that the lengths of the genes represented in the diagram are not proportional to their sizes.
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microorganisms. Both phenotypically and genetically,
resistance to antibacterials has been extensively docu-
mented in genera spanning the entire Bacterial domain
from diverse ecosystems [21!,22!,25–32].

The advent of genome sequencing has greatly acceler-
ated our understanding of evolution. With respect to
resistance determinants, these efforts have uncovered
genes responsible for resistance, cryptic genes that
encode resistance but are perhaps insufficiently
expressed and thus do not confer the phenotype, as well
as those that serve as precursors for resistance determi-
nants. Recent efforts have uncovered a wealth of putative

resistance determinants. For example, the recently
sequenced genome of the erythromycin producer Sacchar-
opolyspora erythraea NRRL23338, a non-pathogenic
Gram-positive bacterium resistant to a wide spectrum
of antibiotics, is predicted to encode a remarkable num-
ber of putative resistance determinants representing
approximately 1% of its genome [33].

Furthermore, the field of metagenomics is rapidly
expanding our ability to explore the genetic diversity
of novel terrestrial and aquatic environments. Metage-
nomics entails the sequencing of a clone library derived
from the total DNA purified from a complex microbial
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Figure 2

Diversity of TEM b-lactamases. Chromosomally encoded genes, as well as homologous genes from environmental metagenomic analyses are
represented above. Enzymes that have been biochemically elucidated to exhibit b-lactam hydrolysis are denoted in red. Note that the scale
bar represents 0.1 substitutions per site.
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ecosystem [20]. These partial genome fragments are
thought to represent the diversity of the community,
including strains which cannot be cultured. Several meta-
genomics projects are ongoing, and their databases are
invaluable reservoirs of information for environmental
resistance profiling [34!]. Examples of these include
the CAMERA database (Cyberinfrastructure for Adva-
nced Marine Microbial Ecology Research and Analysis)
based on global ocean sampling expeditions. In addition,
68 new searchable marine microbial genomes are avail-
able from the Moore Foundation Marine Microbial
Sequencing Project. With respect to environmental
sequencing as a whole, the National Centre for Biotech-
nology Information (NCBI) offers a metagenomics page
containing a large number of databases that contain
contiguous regions from environmental communities
associated with submerged whale carcasses (whale fall),
enhanced biological phosphorus removal (EBPR) sludge
communities from sites in the US and Australia, farm soil,
biofilm microbial communities from acid mine drainage
sites, planktonic microbial communities from North Paci-
fic Subtropical Gyre as well as methane-oxidizing archaea
from deep-sea sediments. These, as well as other geno-
mics consortia will provide invaluable tools for identifying

real and putative bacterial resistance genes in non-clinical
and unculturable species.

In order to truly appreciate the diversity and dispersion of
the environmental resistome, it is of great value to
examine characterized resistance proteins in the context
of not only those annotated as putative resistance deter-
minants but also those from previously under-recognized
sources of resistance. In addition, it is important to
compare proteins of alternate cellular functions from
which these determinants probably evolved. Here we
discuss three examples illustrating this environmental
density, focusing on resistance by means of antibiotic
inactivation.

b-Lactams, the first class of natural product antibiotics to
be implemented clinically, continue to be among the
most extensively prescribed antibacterials in North
America [35]. This diverse class that includes both natural
products and semi-synthetic derivatives, acts by forming
covalent intermediates with active site serine hydroxyl
residues of cell wall crosslinking enzymes, effectively
titrating them out as inactive complexes [36–39]. The
most prevalent mechanism of resistance is enzymatic
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Figure 3

Genetic diversity of different vgb genes. Chromosomally encoded genes, as well as homologous genes from environmental metagenomic
analyses are included above. Enzymes that have been biochemically elucidated to be type B streptogramin lyases are denoted in red. The scale
bar represents 0.1 substitutions per site.
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drug inactivation by b-lactamase enzymes which hydro-
lyze the b-lactam ring essential for antibiotic activity.
Two general chemical mechanisms are known: Ser-de-
pendent hydrolysis and metal-dependent hydrolysis. The
Ambler class A b-lactamases display sequence homology
to penicillin-binding proteins, from which it was thought
that these b-lactamases originally evolved.

The class A TEM subset of b-lactamases (Figure 2) are
present in the genomes of many soil-dwelling strains, as
well as Gram-negatives that are associated with human
infectious diseases (e.g. Burkholderia pseudomallei, Borda-
tella bronchiseptica, and Delftia acidovorans) [40–45]. With

respect to genetic background, commonalities in flanking
genes are evident in many of these microbes, suggesting
evolution from a common ancestor. However, homologs
in some of the strains contain integrases upstream, and in
Salmonella enterica, there is evidence of genetic mobility
in nearby regions both upstream and downstream. Com-
parison to sequences from oceanic metagenomic and
environmental databases suggests the presence of these
b-lactamases in diverse environmental locations, speak-
ing to the ubiquitous dispersion of this important resist-
ance determinant. Confirmation of b-lactamase activity in
these organisms, however, is necessary to fully under-
stand its true diversity.

486 Genomics

Figure 4

Diversity of xat genes. Genes associated with type A streptogramin acetylation are denoted in red, whereas those that acetylate chloramphenicol
are in blue. Note that the scale bar represents 0.1 substitutions per site.
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Type B streptogramins exhibit activity by binding to and
subsequently obstructing the bacterial ribosome exit
tunnel, thereby inhibiting translation [46]. Clinical resist-
ance, documented in strains of Staphylococcus aureus, can
occur by cleavage of the cyclic lactone via an elimination
mechanism by the lyase Vgb [47]. This enzyme displays
significant sequence homology to putative streptogramin
lyases from strains in diverse phyla that include both
environmental strains and clinical pathogens (Figure 3).
Analysis of the available genetic environment revealed
the presence of mobile genetic elements (e.g. transpo-
sases and resolvases) in many of the pathogenic strains,
illustrating the potential for lateral gene transfer. In
addition, searches of environmental genomes and meta-
genomic databases revealed an abundance of uncharac-
terized putative lyases, grouping in many phylogenetic
clusters.

Collectively, these observations suggest that this mech-
anism of resistance is not restricted to clinical pathogens,
but in fact may be more widespread in the genomes of
environmental bacteria than previously anticipated. To
date, enzymes in two of the branches have been con-
firmed to possess streptogramin lyase activity [47], and
further studies of lyases representative of other clusters
are in progress.

Type A streptogramins, structurally unique from the
type B class, are actinomycete natural products or semi-
synthetic derivatives that bind to the peptidyltransfer-
ase centre of the bacterial ribosome, subsequently
inhibiting translation [46]. Clinical resistance has been
documented in Staphylococcus and Enterococcus spp. by
O-acetylation of the antibiotic, as encoded by the vat
genes [48]. Streptogramin A acetyltransferases have
also been identified in environmental isolates, and of
particular importance, they have been located in poul-
try treated with streptogramins as growth promoters
[49,50].

Analysis of the Vat(D) subset of streptogramin acetyl-
transferases reveals homologs in clinically associated
pathogens as well as a diverse array of environmental
strains (Figure 4) [51]. With respect to sequence, this
family of Vat enzymes display homology at both the
primary and tertiary level to a subset of chloramphenicol
acetyltransferases [52] (collectively known as xenobiotic
acetyltransferase xat genes), with clustering suggesting
divergence from a common ancestor. The vat(D)
sequence from a number of the clinically relevant strains
is harboured on a plasmid, and in other strains, both
pathogenic and environmental, the flanking chromosomal
environment contain mobile genetic elements. In both
plasmid and chromosomal genes, vat(D) homologs are
commonly found in multi-drug resistance clusters, near
genes such as vgb, b-lactamases, as well as antibiotic efflux
genes. Analysis of other environmental sources suggests

the presence of streptogramin acetyltransferases in
diverse locations, including aquatic environments. How-
ever, further biochemical evidence is required to confirm
the activity of these putative resistance enzymes.

Conclusions
The overwhelming evidence using both functional and in
silico genomic screening is that environmental organisms
harbour a previously underappreciated density of anti-
biotic resistance genes. This unexpected conclusion
should have a paradigm shifting impact on our under-
standing of the judicious use of antibiotics and the
drug discovery process. Furthermore, it raises exciting
questions about protein evolution and gene transfer
among bacteria. These are early days for studies on the
resistome and there are major problems to be tackled. For
example:

! What are these genes doing in these bacteria?
! Are they bone fide resistance genes or do they have other

functions?
! What is the concentration of antibiotics in the

environment and is this sufficient to select for
resistance?

! What are the triggers that induce HGT in the
environment?

! How do these genetic elements make their way into
pathogenic bacteria?

These are key questions that emerge from the study of
the environmental antibiotic resistome that need resol-
ution in the future.
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