
CHAPTER 5  
 

Vector Autoregression and 
Vector Error-Correction 
Models 

 Vector autoregression (VAR) was introduced by Sims (1980) as a technique that could be 
used by macroeconomists to characterize the joint dynamic behavior of a collection of varia-
bles without requiring strong restrictions of the kind needed to identify underlying structural 
parameters. It has become a prevalent method of time-series modeling. 

 Although estimating the equations of a VAR does not require strong identification as-
sumptions, some of the most useful applications of the estimates, such as calculating impulse-
response functions (IRFs) or variance decompositions do require identifying restrictions. A typi-
cal restriction takes the form of an assumption about the dynamic relationship between a 
pair of variables, for example, that x affects y only with a lag, or that x does not affect y in the 
long run.  

 A VAR system contains a set of m variables, each of which is expressed as a linear func-
tion of p lags of itself and of all of the other m – 1 variables, plus an error term. (It is possible 
to include exogenous variables such as seasonal dummies or time trends in a VAR, but we 
shall focus on the simple case.) With two variables, x and y, an order-p VAR would be the 
two equations 
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 (5.1) 

We adopt the subscript convention that βxyp represents the coefficient of y in the equation for 
x at lag p. If we were to add another variable z to the system, there would be a third equation 

for zt and terms involving p lagged values of z, for example, βxzp, would be added to the right-
hand side of each of the three equations. 

 A key feature of equations (5.1) is that no current variables appear on the right-hand side 
of any of the equations. This makes it plausible, though not always certain, that the regres-
sors of (5.1) are weakly exogenous and that, if all of the variables are stationary and ergodic, 
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OLS can produce asymptotically desirable estimators. Variables that are known to be exoge-
nous—a common example is seasonal dummy variables—may be added to the right-hand 
side of the VAR equations without difficulty, and obviously without including additional 
equations to model them. Our examples will not include such exogenous variables. 

 The error terms in (5.1) represent the parts of yt and xt that are not related to past values 
of the two variables: the unpredictable “innovation” in each variable. These innovations will, 
in general, be correlated with one another because there will usually be some tendency for 
movements in yt and xt to be correlated, perhaps because of a contemporaneous causal rela-
tionship (or because of the common influence of other variables). 

 A key distinction in understanding and applying VARs is between the innovation terms v 
in the VAR and underlying exogenous, orthogonal shocks to each variable, which we shall 
call ε. The innovation in yt is the part of yt that cannot be predicted by past values of x and y. 

Some of this unpredictable variation in yt that we measure by vt is surely due to y
tε , an exog-

enous shock to yt that is has no relationship to what is happening with x or any other variable 
that might be included in the system. However, if x has a contemporaneous effect on y, then 

some part of y
tv  will be due to the indirect effect of the current shock to x, x

tε , which enters 

the yt equation in (5.1) through the error term because current xt is not allowed to be on the 
right-hand side. We will study in the next section how, by making identifying assumptions, 
we can identify the exogenous shocks ε from our estimates of the VAR coefficients and re-
siduals. 

 Correlation between the error terms of two equations, such as that present in (5.1), usual-
ly means that we can gain efficiency by using the seemingly unrelated regressions (SUR) sys-
tem estimator rather than estimating the equations individually by OLS. However, the VAR 
system conforms to the one exception to that rule: the regressors of all of the equations are 
identical, meaning that SUR and OLS lead to identical estimators. The only situation in 
which we gain by estimating the VAR as a system of seemingly unrelated regressions is 
when we impose restrictions on the coefficients of the VAR, a case that we shall ignore here. 

 When the variables of a VAR are cointegrated, we use a vector error-correction (VEC) 
model. A VEC for two variables might look like 
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 (5.2) 

where 0 1t ty x= α + α  is the long-run cointegrating relationship between the two variables and 

λy and λx are the error-correction parameters that measure how y and x react to deviations 
from long-run equilibrium. 
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 When we apply the VEC model to more than two variables, we must consider the possi-
bility that more than one cointegrating relationship exists among the variables. For example, 
if x, y, and z all tend to be equal in the long run, then xt = yt and yt = zt (or, equivalently, xt = 
zt) would be two cointegrating relationships. To deal with this situation we need to general-
ize the procedure for testing for cointegrating relationships to allow more than one cointe-
grating equation, and we need a model that allows multiple error-correction terms in each 
equation. 

5.1 Forecasting and Granger Causality in a VAR 

 In order to identify structural shocks and their dynamic effects we must make additional 
identification assumptions. However, a simple VAR system such as (5.1) can be used for two 
important econometric tasks without making any additional assumptions. We can use (5.1) as 
a convenient method to generate forecasts for x and y, and we can attempt to infer infor-
mation about the direction or directions of causality between x and y using the technique of 
Granger causality analysis.  

5.1.1 Forecasting with a VAR 

 The structure of equations (5.1) is designed to model how the values of the variables in 
period t are related to past values. This makes the VAR a natural for the task of forecasting 
the future paths of x and y conditional on their past histories. 

 Suppose that we have a sample of observations on x and y that ends in period T, and that 
we wish to forecast their values in T + 1, T + 2, etc. To keep the algebra simple, suppose that 
p = 1, so there is only one lagged value on the right-hand side. For period T + 1, our VAR is 
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Taking the expectation conditional on the relevant information from the sample (xT and yT) 
gives 
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 The conditional expectation of the VAR error terms on the right-hand side must be zero 
in order for OLS to estimate the coefficients consistently. Whether or not this assumption is 
valid will depend on the serial correlation properties of the v terms—we have seen that serial-
ly correlated errors and lagged dependent variables of the kind present in the VAR can be a 
toxic combination.  
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 Thus, we want to make sure that ( )1 1| , 0j x y
t t tE v v v− − = . As we saw in an earlier chapter, 

adding lagged values of y and x can often eliminate serial correlation of the error, and this 
method is now more common than using GLS procedures to correct for possible autocorrela-
tion. We assume that our VAR system has sufficient lag length that the error term is not seri-
ally correlated, so that the conditional expectation of the error term for all periods after T is 
zero. This means that the final term on the right-hand side of each equation in (5.4) is zero, 
so 
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 If we knew the β coefficients, we could use (5.5) to calculate a forecast for period T + 1. 
Naturally, we use our estimated VAR coefficients in place of the true values to calculate our 
predictions 
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 The forecast error in the predictions in (5.6) will come from two sources: the unpredicta-
ble period T + 1 error term and the errors we make in estimating the β coefficients. Formal-
ly, 
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If our estimates of the β coefficients are consistent and there is no serial correlation in v, then 
the expectation of the forecast error is asymptotically zero. The variance of the forecast error 
is 
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As our consistent estimates of the β coefficients converge to the true values (as T gets large), 
all of the terms in this expression converge to zero except the last one. Thus, in calculating 
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the variance of the forecast error, the error in estimating the coefficients is often neglected, 
giving  
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 One of the most useful attributes of the VAR is that it can be used recursively to extend 
forecasts into the future. For period T + 2, 
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so by recursive expectations 
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The corresponding forecasts are again obtained by substituting coefficient estimates to get 
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 If we once again ignore error in estimating the coefficients, then the two-period-ahead 
forecast error in (5.8) is 
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In general, the error terms for period T + 1 will be correlated across equations, so the vari-
ance of the two-period-ahead forecast is approximately 
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 The two-period-error forecast error has larger variance than the one-period-ahead error 
because the errors that we make in forecasting period T + 1 propagate into errors in the fore-
cast for T + 2. As our forecast horizon increases, the variance gets larger and larger, reflect-
ing our inability to forecast a great distance into the future even if (as we have optimistically 
assumed here) we have accurate estimates of the coefficients. 

 The calculations in equation (5.9) become increasingly complex as one considers longer 
forecast horizons. Including more than two variables in the VAR or more than one lag on 
the right-hand side also increases the number of terms in both (5.8) and (5.9) rapidly. We are 
fortunate that modern statistical software, including Stata, has automated these tasks for us. 
We now discuss the basics of estimating a VAR in Stata. 

5.1.2 Estimating and forecasting a simple VAR in Stata 

 At one level, estimating a VAR is a simple task—because it is estimated with OLS, the 
Stata regression command will handle the estimation. However, for everything we do with a 
VAR beyond estimation, we need to consider the system as a whole, so Stata provides a fam-
ily of procedures that are tailored to the VAR application. The two essential VAR com-
mands are var and varbasic. The latter is easy to use (potentially as easy as listing the 
variables you want in the system), but lacks the flexibility of the former to deal with asym-
metric lag patterns across equations, additional exogenous variables that have no equations 
of their own, and coefficient constraints across equations. We discuss var first; later in the 
chapter we will go back and show the use of the simpler varbasic command. (As always, 
only simple examples of Stata commands are shown here. The current Stata manual availa-
ble through the Stata Help menu contains full documentation of all options and variations, 
along with additional examples.) 

 To run a simple VAR for variables x and y with two lags or each variable in each equa-
tion and no constraints or exogenous variables, we can simply type  

  var x y , lags(1/2) 

Notice that we need 1/2 rather than just 2 in the lag specification because we want lags 1 
through 2, not just the second lag. The output from this command will give the β coefficients 
from OLS estimation of the two regressions, plus some system and individual-equation 
goodness-of-fit statistics. 

 Once we have estimated a VAR model, there are a variety of tests that can be used to 
help us determine whether we have a good model. In terms of model validation, one im-
portant property for our estimates to have desirable asymptotic properties is that the model 

must be stable in the sense that the estimated coefficients imply that / j
t s ty v+∂ ∂  and 

/ j
t s tx v+∂ ∂  (j = x, y) become small as s gets large. If these conditions do not hold, then the 

VAR implies that x and y are not jointly ergodic: the effects of shocks do not die out.  
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 The Stata command varstable (which usually needs no arguments or options) calcu-
lates the eigenvalues of a “companion matrix” for the system. If all of the calculated eigen-
values (which can be complex) are less than one (in modulus, if they have imaginary parts), 
then the model is stable. This condition is the vector extension to the stationarity condition 
that the roots of an autoregressive polynomial of a single variable lie outside the unit circle.  

 If the varstable command reports an eigenvalue with modulus greater than one, then 
the VAR is unstable and forecasts will explode. This can arise when the variables in the 
model are non-stationary or when the model is misspecified. Differencing (and perhaps, after 
checking for cointegration, using a VEC) may yield a stable system. 

 If the VAR is stable, then the main issue in specification is lag length. We discussed lag 
length issues above in the context of single-variable distributed lag models. The issues and 
methods in a VAR are similar, but apply simultaneously to all of the equations of the model 
and all of the variables, since we conventionally choose a common length for all lags. 

 Forecasting with a VAR assumes that there is no serial correlation in the error term. The 
Stata command varlmar implements a VAR version of the Lagrange multiplier test for se-

rial correlation in the residual. This command tests the null hypotheses ( )cov , 0j j
t t sv v − =  with 

j indexing the variables of the model. The main option in the varlmar command allows 
you to specify the highest order of autocorrelation (the default is 2) that you want to test in 
the residual. For example varlmar , mlag (4) would perform the above test individual-
ly for s = 1, s = 2, s = 3, and s = 4. If the Lagrange multiplier test rejects the null hypothesis 
of no serial correlation, then you may want to include additional lags in the equations and 
perform the test again. 

 The Akaike Information Criterion (AIC) and Schwartz-Bayesian Information Criterion 
(SBIC) are often used to choose the optimal lag length in single-variable distributed-lag mod-
els. These and other criteria have been extended to the VAR case and are reported by the 
varsoc command. Typing varsoc , maxlag(4) tells Stata to estimate VARs for lag 
length 0, (just constants), 1, 2, 3, and 4, and compute the log-likelihood function and various 
information criteria for each choice. The output of the varsoc command includes likeli-
hood-ratio test statistics for the null hypothesis that the next lag is zero. The optimal lag 
length by each criterion is indicated by an asterisk in the table of results. In general, the vari-
ous criteria will not agree, so you will need to exercise some degree of judgment in choosing 
among the recommendations. 

 Another way of deciding on lag length is to use standard (Wald) test statistics to test 
whether all of the coefficients at each lag are zero. Stata automates this in the varwle 
command, which requires no options.  

 Once you have settled on a VAR model that includes an appropriate number of lags, is 
stable, and has serially uncorrelated errors, you can proceed to use the model to generate 
forecasts. There are two commands for creating and graphing forecasts. The fcast com-
pute command calculates the predictions of the VAR and stores them in a set of new vari-
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ables. If you want your forecasts to start in the period immediately following the last period 
of the estimating sample, then the only option you need in the fcast compute command 
is step(#), with which you specify the forecast horizon (how many periods ahead you 
want to forecast). The forecast variables are stored in variables that attach a prefix that you 
specify to the names of the VAR variables being forecasted. For example, to forecast your 
VAR model for 10 periods beginning after the estimating sample and store predicted values 
of x in pred_x and y in pred_y, you could type 

  fcast compute pred_ , step(10) 

The fcast compute command also generates standard errors of the forecasts and uses 
them to calculate upper and lower confidence bounds. After computing the forecasts, you 
can graph them along with the confidence by typing fcast graph pred_*. If you have 
actual observed values for the variables for the forecast period, they can be added to the 
graph with the observed option (separated from the command by a comma, as always 
with Stata options). 

5.1.3 Granger causality 

 One of the first, and undeniable, maxims that every econometrician or statistician is 
taught is that “correlation does not imply causality.” Correlation or covariance is a symmet-

ric, bivariate relationship; ( ) ( )cov , cov ,x y y x= . We cannot, in general, infer anything 

about the existence or direction of causality between x and y by observing non-zero covari-
ance. Even if our statistical analysis is successful in establishing that the covariance is highly 
unlikely to have occurred by chance, such a relationship could occur because x causes y, be-
cause y causes x, because each causes the other, or because x and y are responding to some 
third variable without any causal relationship between them. 

 However, Clive Granger defined the concept of Granger causality, which, under some 
controversial assumptions, can be used to shed light on the direction of possible causality 
between pairs of variables. The formal definition of Granger causality asks whether past val-
ues of x aid in the prediction of yt, conditional on having already accounted for the effects on 
yt of past values of y (and perhaps of past values of other variables). If they do, the x is said to 
“Granger cause” y.  

 The VAR is a natural framework for examining Granger causality. Consider the two-
variable system in equations (5.1). The first equation models yt as a linear function of its own 
past values, plus past values of x. If x Granger causes y (which we write as x y⇒ ), then some 

or all of the lagged x values have non-zero effects: lagged x affects yt conditional on the ef-
fects of lagged y. Testing for Granger causality in (5.1) amounts to testing the joint blocks of 

coefficients βyxs and βxys to see if they are zero. The null hypothesis x ⇒ y  (x does not 

Granger cause y) in this VAR is  

 0 1 2: ... 0,yx yx yxpH β = β = = β =   
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which can be tested using a standard Wald F or χ2 test. Similarly, the null hypothesis y ⇒ x  

can be expressed in the VAR as 

 0 1 2: ... 0.xy xy xypH β = β = = β =   

 Running both of these tests can yield four possible outcomes, as shown in Table 5-1: no 
Granger causality, one-way Granger causality in either direction, or “feedback,” with 
Granger causality running both ways. 

Table 5-1.  Granger causality test outcomes 

 Fail to reject: 

1 2 ... 0yx yx yxsβ = β = = β =  
Reject: 

1 2 ... 0yx yx yxsβ = β = = β =  

Fail to reject: 

1 2 ... 0xy xy xysβ = β = = β =  
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y ⇒ x

x y⇒
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Reject: 
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y x

x
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(y Granger causes x) 

y x

x y

⇒
⇒

 

(bi-directional Granger cau-
sality, or feedback) 

 

 There are multiple ways to perform Granger causality tests between a pair of variables, 
so no result is unique or definitive. Within the two-variable VAR, one may obtain different 
results with different lag lengths p. Moreover, including additional variables in the VAR sys-
tem may change the outcome of the Wald tests that underpin Granger causality. In a three-
variable VAR, there are three pairs of variables, (x, y), (y, z), and (x, z) that can be tested for 
Granger causality in both directions: six tests with 36 possible combinations of outcomes. 
The effect of lagged x on yt can disappear when lagged values of a third variable z are added 
to the regression. For example, if x z⇒  and z y⇒ , then omitting z from the VAR system 

could lead us to conclude that x y⇒  even if there is no direct Granger causality in the larger 

system. 

 Is “Granger causality” really “causality”? Obviously, if the maxim about correlation and 
causality is true, then there must be something tricky happening, and indeed there is. 
Granger causality tests whether lagged values of one variable conditionally help predict an-
other variable. Under what conditions can we interpret this as “causality”? Two assumptions 
are sufficient. 

 First, we use temporal priority in an important way in Granger causality. We interpret 
correlation between lagged x and the part of current y that is orthogonal to its own lagged 
values as x y⇒ . Could this instead reflect current y “causing” lagged x? To rule this out, 

interpreting Granger causality as more general causality requires that we assume that the fu-
ture cannot cause the present. While this may often be a reasonable assumption, modern eco-
nomic theory has shown us that expectations of future variables (which are likely to be corre-
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lated with the future variables themselves) can change agents’ current choices, which might 
result in causality that would appear to violate this assumption. 

 Second, any causal relationship that is strictly immediate in the sense that a change in xt 
leads to a change in yt but no change in any future values of y would fly under the radar of a 
Granger causality test, which only measures and tests lagged effects. Most causal economic 
relationships are dynamic in that effects are not fully realized within a single time period, so 
this difficulty may not present a practical problem in many cases. 

 To summarize, we must be very careful in interpreting the result of Granger causality 
tests to reflect true causality in any non-econometric sense. Only if we can rule out the possi-
bility of the future causing the present and strictly immediate causal effects can we confident-
ly think of “Granger causality” as “causality.” 

 Stata implements Granger causality tests automatically with vargranger, which tests 
all of the pairs of variables in a VAR for Granger causality. In systems with more than two 
variables, it also tests the joint hypothesis that all of the other variables fail to Granger cause 
each variable in turn. This joint test amounts to testing whether all of the lagged terms other 
than those of the dependent variable have zero effects. 

5.2 Identification of Structural Shocks in a VAR System 

 Two variables that have a dynamic relationship in a VAR system are also likely to have 
some degree of contemporaneous association. This will be reflected in correlation in the in-
novation terms v in (5.1) because there is no other place in the equations for this association 
to be manifested. It is natural to think of the VAR system as the reduced form of a structural 
model in which contemporaneous effects among the variables have been “solved out.” We 
now consider a simple two-equation structural model in which xt affects yt contemporaneous-
ly but yt has no immediate effect on xt. 

 Suppose that two variables, x and y, evolve over time according to the structural model 

 0 1 1 1 1

0 1 1 0 1 1 ,

x
t t t t

y
t t t t t

x x y

y y x x
− −

− −

= α + α + θ + ε

= φ + φ + δ + δ + ε
 (5.10) 

where the ε terms are exogenous white-noise shocks to x and y that are “orthogonal” (uncor-

related) to one another: ( ) 2var ,x
t xε = σ  ( ) 2var ,y

t yε = σ  and ( )cov , 0.x y
t tε ε =  The ε shocks are 

changes in the variables that come from outside the VAR system. Because they are (assumed 
to be) exogenous, we can measure the effect of an exogenous change in x on the path of y 

and x by looking at the dynamic marginal effects of x
tε , for example, / x

t s ty +∂ ∂ε . This is the 

key distinction between the VAR error terms v and the exogenous structural shocks ε—
depending on the identifying assumptions we make, we cannot generally interpret a change 
in v as an exogenous shock to one variable.  
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 We assume that x and y are stationary and ergodic, which imposes restrictions on the 

autoregressive coefficients of the model.
1
 

 The first equation of (5.10) is already in the form of a VAR equation: it expresses the cur-
rent value of xt as a function of lagged values of x and y. If we solve (5.10) by substituting for 
xt in the second equation using the first equation, we get 

 
( )

( ) ( ) ( ) ( )
0 1 1 0 0 1 1 1 1 1 1

0 0 0 1 0 1 1 1 0 1 1 0 ,

x y
t t t t t t t

y x
t t t t

y y x y x

y x

− − − −

− −

= φ + φ + δ α + α + θ + ε + δ + ε

= φ + δ α + φ + δ θ + δ + δ α + ε + δ ε
 (5.11) 

which also has the VAR form. Thus, we can write the reduced-form system of (5.10) as 

 
0 1 1 1 1

0 1 1 1 1 ,

y
t y yy t yx t t

x
t x xy t xx t t

y y x v

x y x v

− −

− −

= β +β +β +

= β +β +β +
 (5.12) 

with 

 

0 0 0 0 0 0

1 1 0 1 1 1

1 1 0 1 1 1

0 .

y x

yx xy

yy xx
y y x x x
t t t t tv v

β = φ + δ α β = α
β = φ + δ θ β = θ
β = δ + δ α β = α

= ε + δ ε = ε

 (5.13) 

Given our assumptions about the distributions of the exogenous shocks ε, we can determine 
the variances and covariance of the VAR error terms v as 

 

( )
( )
( ) ( ) ( )

2

2 2 2
0

2
0 0

var

var

cov , .

x
t x

y
t y x

x y x y x y x
t t t t t t t x

v

v

v v E v v E

= σ

= σ + δ σ

 = = ε ε + δ ε = δ σ 

 (5.14) 

 Let’s now consider what can be estimated using the VAR system (5.12) and to what ex-
tent these estimates allow us to infer value of the parameters in the structural system (5.10). 
In terms of coefficients, there are six β coefficients that can be estimated in the VAR and 
seven structural coefficients in (5.10). This seems a pessimistic start to the task of identifica-
tion. However, we can also estimate the variances and covariance of the v terms using the 

VAR residuals:  ( )var ,x
tv   ( )var y

tv , and  ( )cov ,x y
t tv v . Conditions (5.14) allow us to estimate 

three parameters— 2 2
0, ,x yσ σ δ —from the three estimated variances and covariance: 

                                                      
1
 In a single-variable autoregressive model, we would require that the coefficient φ1 for yt – 1 be in the 

range (–1, 1). The corresponding conditions in the vector setting are more involved, but similar in na-
ture. 
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 ( )
 ( )
 ( )
 ( )  ( )

2

0

2 2
0

ˆ var ,

cov ,
ˆ ,

var

ˆˆ var var .

x
x t

x y
t t

x
t

y x
y t t

v

v v

v

v v

σ =

δ =

σ = − δ

 (5.15) 

Armed with an estimate of δ0 from the covariance term, we can now use the six β coeffi-
cients to estimate the remaining six structural coefficients using (5.13). The system is just 
identified. 

 So how did we manage to achieve identification through this “back-door” covariance 

method? Let’s consider why x
tv  and y

tv , which are the innovations in x and y that cannot be 

predicted from past values, might be correlated. In a general model they could be correlated 
because (1) xt has an effect on yt, (2) yt has an effect on xt, or (3) the exogenous structural 

shocks to x and y, x
tε  and y

tε , are correlated with one another. Our VAR estimates give us 

no method of discriminating among these three possible sources of correlation, so without 
ruling out two of them we cannot achieve identification. In the model of (5.10), we have 
ruled out, by assumption, (2)  and (3): yt does not affect xt and the exogenous shocks to x and 

y are orthogonal. Thus, we are interpreting the covariance between x
tv  and y

tv  as reflecting 

the contemporaneous effect of xt on yt. This allows us to identify the coefficient measuring 

this effect—δ0 in (5.10)—based on the ( )cov ,x y
t tv v  as we do in the second equation of (5.15). 

 This identifying assumption also allows us to reconstruct estimates of the exogenous 
structural shocks ε from the residuals of the VAR: 

0

ˆ ˆ

ˆˆ ˆ ˆ .

x x
t t

y y x
t t t

v

v v

ε =

ε = − δ
 

This makes it clear that we are interpreting the VAR residual for x to be an exogenous, struc-

tural shock to x. In order to extract the structural shock to y, we subtract the part of ˆ y
tv , 

0 0
ˆ ˆ ˆˆx x

t tvδ = δ ε , that is due to the effect of the shock to xt on yt. From an econometric standpoint, 

we could equally well make the opposite assumption, assuming that yt affects xt rather than 

vice versa, which would interpret ˆ y
tv  as ˆ y

tε  and calculate ˆ x
tε  as the part of ˆx

tv  that is not ex-

plained by ˆ y
tv . Choosing which interpretation to use must be done on the basis of theory: 

which variable is more plausibly exogenous within the immediate period. We may get differ-
ent results depending on which identification assumption we choose, so if there is no clear 
choice it may be useful to examine whether results are robust across different choices. 

 Identification of the underlying structural shocks is necessary if we are to estimate the 
effects of an exogenous shock to a single variable on the dynamic paths of all of the variables 
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of the system, which we call impulse-response functions (IRFs). We discuss the computation 
and interpretation of IRFs in the next section. 

 In our example, we identified shocks by limiting the contemporaneous effects among the 
variables. With only two variables, there are two possible choices: (1) the assumption we 
made, that xt affects yt immediately but yt does not have an immediate effect on xt or (2) the 
opposite assumption, that yt affects xt immediately but xt does not affect yt except with a lag. 
We can think of the choice between these alternatives as an “ordering” of the variables, with 
the variables lying higher in the order having instantaneous effects on those lower in the or-
der, but the lower variables only affecting those above them with a lag. 

 This ordering or “orthogonalization” strategy of identification extends directly to VAR 
systems with more than two variables. Sims’s seminal VAR system had six variables, which 
he ordered as the money supply, real output, unemployment, wages, prices, and import pric-
es. By adopting this ordering, Sims was imposing an array of identifying restrictions about 
the contemporaneous effects of shocks on the variables of the system. The money shock, be-
cause it was at the top of the list, could affect all of the variables in the system within the cur-
rent period. The shock to output affects all variables immediately except money, because 
money lies above it on the list. The variable at the bottom of the list, import prices, is as-
sumed to have no contemporaneous effect on any of the other variables of the system. 

 Although identification by ordering is still common, subsequent research has shown that 
other kinds of restrictions can be used. For example, in some macroeconomic models we can 
assume that changes in a variable such as the money supply would have no long-run effect 
on another variable such as real output. In a simple system such as (5.10), this might show 
up as the assumption that δ0 + δ1 = 0, for example. Imposing this condition would allow the 
seven structural coefficients of (5.10) to be identified from the six β coefficients of the VAR 
without using restrictions on the covariances. 

5.3 Interpreting the Results of Identified VARs 

 When we can identify the structural shocks to each variable in a VAR, we can perform 
two kinds of analysis to explain how each shock affects the dynamic path of all of the varia-
bles of the system. Impulse-response functions (IRFs) measure the dynamic marginal effects 
of each shock on all of the variables over time. Variance decompositions examine how im-
portant each of the shocks is as a component of the overall (unpredictable) variance of each 
of the variables over time.  

 It is important to stress that, unlike forecasts and Granger causality tests, both IRFs and 
variance decompositions can only be calculated based on a set of identifying assumptions and 
that a different set of identification assumptions may lead to different conclusions. 

 Suppose that we have an n-variable VAR with lags up to order p. If the variables of the 
system are y1, y2, …, yn, then we can write the n equations of the VAR as  
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∑ ∑  (5.16) 

We assume that we have a set of identifying restrictions on the model—either an ordering of 
assumed contemporaneous causality or another set of assumptions—so that we can identify 

the n orthogonal structural shocks i
tε  from the n VAR error terms i

tv . 

 The impulse-response functions are the n × n set of dynamic marginal effects of a one-
time shock to variable j on itself or another variable i: 

 , 0, 1, 2, ....
i
t s

j
t

y
s+∂
=

∂ε
 (5.17) 

Note that there is in principle no limit on how far into the future these dynamic impulse re-
sponses can extend. If the VAR is stable, then the IRFs should converge to zero as the time 
from the shock s gets large—one-time shocks should not have permanent effects. As noted 
above, non-convergent IRFs and unstable VARs are indications of non-stationarity in the 
variables of the model, which may be corrected by differencing. 

 IRFs are usually presented graphically with the time lag s running from zero up to some 
user-set limit S on the horizontal axis and the impact at the s-order lag on the vertical. They 
can also be expressed in tabular form if the numbers themselves are important. One common 
format for the entire collection of IRFs corresponding to a VAR is as an n × n matrix of 
graphs, with the “impulse variable” (the shock) on one dimension and the “response varia-
ble” on the other. 

 Each of the n2 IRF graphs tells us how a shock to one variable affects another (or the 
same) variable. There are two common conventions for determining the size of the shock to 
the impulse variable. One is to use a shock of magnitude one. Since we can think of the im-
pulse shock as the ∂ε in the denominator of (5.17), setting the shock to one means that the 
values reported are the dynamic marginal effects as in (5.17).  

 However, a shock of size one does not always make economic sense: Suppose that the 
shock variable is banks’ ratio of reserves to deposits, expressed as a fraction. An increase of 
one in this variable, say from 0.10 to 1.10, would be implausible. To aid in interpretation, 
some software packages normalize the size of the shocks to be one standard deviation of the 
variable rather than one unit. Under this convention, the values plotted are 

 ˆ , 0, 1, 2, ...
i
t s

jj
t

y
s+∂

σ =
∂ε

  

and are interpreted as the change in each response variable resulting from a one-standard-
deviation increase in the impulse variable. This makes the magnitude of the changes in the 
response variables more realistic, but does not allow the IRF values to be interpreted directly 
as dynamic marginal effects. 
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 Because the VAR model is linear, the marginal effects in (5.17) are constant, so which 
normalization to choose for the shocks—one unit or one standard deviation—is arbitrary 
and should be done to facilitate interpretation. Stata uses the convention of the one-unit im-
pulse in its “simple IRFs” and one standard deviation in its “orthogonalized IRFs.” 

 If the impulse variable is the same as the response variable, then the IRF tells us how 
persistent shocks to that variable tend to be. By definition,  

 1
i
t
i
t

y∂
=

∂ε
,  

so the zero-order own impulse response is always one. If the VAR is stable, reflecting the 
stationarity and ergodicity of the underlying variables, then the own impulse responses decay 
to zero as the time horizon increases: 

 lim 0.
i
t s

is
t

y +

→∞

∂
=

∂ε
  

If the impulse responses decay to zero only slowly then shocks to the variable tend to change 
its value for many periods, whereas a short impulse response pattern indicates that shocks 
are more transitory. 

 For cross-variable effects, where the impulse and response variables are different, general 
patterns of positive or negative responses are possible. Depending on the identification as-
sumption (the “ordering”), the zero-period response may be zero or non-zero. By assump-
tion, shocks to variables near the bottom of the ordering have no current-period effect on var-
iables higher in the order, so the zero-lag impulse response in such cases is exactly zero. 

5.4 A VAR Example: GDP Growth in US and Canada 

 To illustrate the various applications of VAR analysis, we examine the joint behavior of 
US and Canadian real GDP growth using a quarterly sample from 1975q1 through 2011q4. 
Each of the series is an annual continuously-compounded growth rate. For example, 

( )1400 ln lnt t tUSGR USGDP USGDP −= × − , with the 4 included to express the growth rate as 

an annual rather than quarterly rate and the 100 to put the rate in percentage terms.  

5.4.1 Getting the specification right 

 As a preliminary check, we verify that both growth series are stationary. To be conserva-
tive, we include four lagged differences to eliminate serial correlation in the error term of the 
Dickey-Fuller regression. 

. dfuller usgr , lags(4) 
 
Augmented Dickey-Fuller test for unit root         Number of obs   =       143 
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                               ---------- Interpolated Dickey-Fuller --------- 
                  Test         1% Critical       5% Critical      10% Critical 
               Statistic           Value             Value             Value 
------------------------------------------------------------------------------ 
 Z(t)             -4.565            -3.496            -2.887            -2.577 
------------------------------------------------------------------------------ 
MacKinnon approximate p-value for Z(t) = 0.0001 
 
. dfuller cgr , lags(4) 
 
Augmented Dickey-Fuller test for unit root         Number of obs   =       143 
 
                               ---------- Interpolated Dickey-Fuller --------- 
                  Test         1% Critical       5% Critical      10% Critical 
               Statistic           Value             Value             Value 
------------------------------------------------------------------------------ 
 Z(t)             -4.769            -3.496            -2.887            -2.577 
------------------------------------------------------------------------------ 
MacKinnon approximate p-value for Z(t) = 0.0001 
 

In both cases, we comfortably reject the presence of a unit root in the growth series because 
the test statistic is more negative than the critical value, even at a 1% level of significance. 
Phillips-Perron tests lead to similar conclusions. Therefore, we conclude that VAR analysis 
can be performed on the two growth series without differencing.  

 To assess the optimal lag length, we use the Stata varsoc command with a maximum 
lag length of four: 

. varsoc usgr cgr , maxlag(4) 
 
   Selection-order criteria 
   Sample:  1976q1 - 2011q4                     Number of obs      =       144 
  +---------------------------------------------------------------------------+ 
  |lag |    LL      LR      df    p      FPE       AIC      HQIC      SBIC    | 
  |----+----------------------------------------------------------------------| 
  |  0 |  -709.83                      67.4086   9.88653   9.90329   9.92777  | 
  |  1 | -671.726  76.208*   4  0.000  41.9769*  9.41286*  9.46314*   9.5366* | 
  |  2 | -670.318  2.8151    4  0.589  43.5178   9.44887   9.53267    9.6551  | 
  |  3 | -667.543    5.55    4  0.235  44.2688   9.46588   9.58321   9.75461  | 
  |  4 |  -664.14  6.8067    4  0.146  44.6449   9.47417   9.62501   9.84539  | 
  +---------------------------------------------------------------------------+ 
   Endogenous:  usgr cgr 
    Exogenous:  _cons 
 

Note that all of the regressions leading to the numbers in the table are run for a sample be-
ginning in 1976q1, which is the earliest date for which 4 lags are available, even though the 
regressions with fewer than 4 lags could use a longer sample. In this VAR, all of the criteria 
support a lag of length one, so that is what we choose. 
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5.4.2 Analysis without making identification assumptions 

 Although we could accomplish the tasks we desire using varbasic, we will use the 
more general commands to demonstrate their use. To run the VAR regressions, we use var: 

. var usgr cgr , lags(1) 
 
Vector autoregression 
 
Sample:  1975q2 - 2011q4                           No. of obs      =       147 
Log likelihood = -686.0263                         AIC             =  9.415324 
FPE            =  42.08037                         HQIC            =  9.464918 
Det(Sigma_ml)  =  38.78127                         SBIC            =  9.537383 
 
Equation           Parms      RMSE     R-sq      chi2     P>chi2 
---------------------------------------------------------------- 
usgr                  3     2.95659   0.1789   32.02707   0.0000 
cgr                   3     2.39083   0.3861   92.43759   0.0000 
---------------------------------------------------------------- 
 
------------------------------------------------------------------------------ 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
usgr         | 
        usgr | 
         L1. |   .2512771   .0898504     2.80   0.005     .0751735    .4273807 
             | 
         cgr | 
         L1. |   .2341061   .0975328     2.40   0.016     .0429453    .4252668 
             | 
       _cons |   1.494612   .3354005     4.46   0.000     .8372394    2.151985 
-------------+---------------------------------------------------------------- 
cgr          | 
        usgr | 
         L1. |   .3759117   .0726571     5.17   0.000     .2335065    .5183169 
             | 
         cgr | 
         L1. |   .2859551   .0788694     3.63   0.000     .1313739    .4405362 
             | 
       _cons |   .8755421   .2712199     3.23   0.001     .3439609    1.407123 
------------------------------------------------------------------------------ 
 

We have not yet attempted any shock identification, so at this point the ordering of the vari-
ables in the command is arbitrary. The VAR regressions are run starting the sample at the 
earliest possible date with one lag, which is 1975q2 because our first available observation is 
1975q1. Because it uses three additional observations, the reported AIC and SBIC values 
from the VAR output do not match those from the varsoc table above. 

 To assess the validity of our VAR, we test for stability and for autocorrelation of the re-
siduals. The varstable command examines the dynamic stability of the system. None of 
the eigenvalues is even close to one, so our system is stable. 
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. varstable 
 
   Eigenvalue stability condition 
  +----------------------------------------+ 
  |        Eigenvalue        |   Modulus   | 
  |--------------------------+-------------| 
  |   .5657757               |   .565776   | 
  | -.02854353               |   .028544   | 
  +----------------------------------------+ 
   All the eigenvalues lie inside the unit circle. 
   VAR satisfies stability condition. 
 

The varlmar performs a Lagrange multiplier test for the joint null hypothesis of no auto-
correlation of the residuals of the two equations: 

. varlmar , mlag(4) 
 
   Lagrange-multiplier test 
  +--------------------------------------+ 
  | lag  |      chi2    df   Prob > chi2 | 
  |------+-------------------------------| 
  |   1  |    4.6880     4     0.32084   | 
  |   2  |    5.5347     4     0.23670   | 
  |   3  |    3.5253     4     0.47404   | 
  |   4  |    7.1422     4     0.12856   | 
  +--------------------------------------+ 
   H0: no autocorrelation at lag order 
 

We cannot reject the null of no residual autocorrelation at orders 1 through 4 at any conven-
tional significance level, so we have no evidence to contradict the validity of our VAR. 

 To determine if the growth rates of the US and Canada affect one another over time, we 
can perform Granger causality tests using our VAR. 

. vargranger 
 
   Granger causality Wald tests 
  +------------------------------------------------------------------+ 
  |          Equation           Excluded |   chi2     df Prob > chi2 | 
  |--------------------------------------+---------------------------| 
  |              usgr                cgr |  5.7613     1    0.016    | 
  |              usgr                ALL |  5.7613     1    0.016    | 
  |--------------------------------------+---------------------------| 
  |               cgr               usgr |  26.768     1    0.000    | 
  |               cgr                ALL |  26.768     1    0.000    | 
  +------------------------------------------------------------------+ 
 

We see strong evidence that lagged Canadian growth helps predict US growth (the p-value is 
0.016) and overwhelming evidence that lagged US growth helps predict Canadian growth (p-
value less than 0.001). It is not surprising, given the relative sizes of the economies, that the 
US might have a stronger effect on Canada than vice versa. Note that because we have only 
one lag in our VAR, the Granger causality tests have only one degree of freedom and are 
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equivalent to the single-coefficient tests in the VAR regression tables. The coefficient of Ca-
nadian growth in the US equation has a z value of 2.40, which is the square root of the 
5.7613 value reported in the vargranger table; both have identical p-values. If we had 
more than one lag in the regressions, then the z values in the VAR table would be tests of 

individual lag coefficients and the χ2 values in the Granger causality table would be joint 
tests of the blocks of lag coefficients associated with each variable. 

 We next explore the implications of our VARs for the behavior of GDP in the two coun-
tries in 2012 and 2013. What does our model forecast? To find out, we issue that command: 
fcast compute p_, step(8). This command produces no output, but changes our 
dataset in two ways. First, it extends the dataset by eight observations to 2013q4, filling in 
appropriate values for the date variable. Second, it adds eight variables to the dataset with 
values for those eight quarters. The new variables p_usgr and p_cgr contain the forecasts, 
and the variables p_usgr_SE, p_usgr_LB, and p_usgr_UB (and corresponding variables 
for Canada) contain the standard error, 95% lower bound, and 95% upper bound for the 
forecasts.  

 We can examine these forecast values in the data browser or with any statistical com-
mands in the Stata arsenal, but it is often most informative to graph them. The command 
fcast graph p_usgr p_cgr generates the graph shown in Figure 5-1. The graph 
shows that the confidence bands on our forecasts are very large: our VARs do not forecast 
very confidently. The point forecasts predict little change in growth rates. The US growth 
rate is predicted to decline very slightly and then hold steady near its mean; the Canadian 
growth rate to increase a bit and then converge to its mean. If the goal of our VAR exercise 
was to obtain insightful and reliable forecasts, we have not succeeded! 

 Estimation, Granger causality, and forecasting can all be accomplished without any 
identification assumptions. But this is as far as we can go with our VAR analysis without 
making some assumptions to allow us to identify the structural shocks to US and Canadian 
GDP growth.  
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Figure 5-1. Graph of forecasts 

5.4.3 Impulse-response functions and variance decompositions 

 Only if the residuals of the two equations are contemporaneously uncorrelated can we 
interpret them as structural shocks. We would expect that innovations to US and Canadian 
growth in any period would tend to be positively correlated, and indeed the cross-equation 
correlation coefficient for the residuals in our VAR regressions is 0.44.  

 In order to identify the effects of shocks to US or Canadian growth on the subsequent 
time paths of both, we must make an assumption about whether the correlation is due to cur-
rent US growth affecting current Canadian growth or due to Canadian growth affecting US 
growth. Given the relative sizes of the two economies, theory suggests that US growth would 
have a stronger effect on Canada than vice versa, and this is supported somewhat by the evi-
dence for lagged effects from our Granger causality tests (although both have strong effects 
on the other). Thus, we choose as our preferred identification pattern interpreting the con-
temporaneous correlation as the effect of US growth on Canadian growth: US growth is first 
in our ordering and Canadian growth is second. 

 We begin by creating a “.irf” file called “uscan.irf” to contain our impulse-
response functions: 

. irf set "uscan" 
(file uscan.irf created) 
(file uscan.irf now active) 

-5
0

5
10

-5
0

5
10

2011q3 2012q1 2012q3 2013q1 2013q3 2011q3 2012q1 2012q3 2013q1 2013q3

Forecast for usgr Forecast for cgr

95% CI forecast
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We then create an IRF entry in the file called “L1” to hold the results of our one-lag VARs, 
running the IRF effect horizon out 20 quarters (five years): 

. irf create L1 , step(20) order(usgr cgr) 
(file uscan.irf updated) 

 

We specified the ordering explicitly in creating the IRF. However, because the ordering is 
the same as the order in which the variables were listed in the var command itself, Stata 
would have chosen this ordering by default. 

 We can now use the irf graph command to produce impulse-response function and 
variance decomposition graphs. To get the (orthogonalized) IRFs, we type 

. irf graph oirf , irf(L1) ustep(8)  

 

It is important to specify oirf rather than irf because the latter gives impulse responses 
assuming (counterfactually) that the VAR residuals are uncorrelated. The resulting IRFs are 
shown in Figure 5-2. 

 

Figure 5-2. IRFs for preferred ordering 
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 The diagonal panels in Figure 5-2 show the effects of shocks to each country’s GDP 
growth on future values of its own growth. In both cases, the shock dies out quickly, reflect-
ing the stationarity of the variables. A one-standard deviation shock to Canadian GDP 
growth in the top-left panel is just over 2 percent; a corresponding shock to U.S. growth is 
close to 3 percent. 

 The off-diagonal panels (bottom-left and top-right) show the effects of a growth shock in 
one country on the path of growth in the other. In the bottom-left panel, we see that a one-
standard-deviation (about 3 percentage points) shock in U.S. growth raises Canadian growth 
by about 1 percentage point in the current quarter, then by a bit more in the next quarter as 
the lagged effect kicks in. From the second lag on, the effect decays rapidly to zero, with the 
statistical significance of the effect vanishing at about one year. 

 In the top-right panel, we see the estimated effects of a shock to Canadian growth on 
growth in the United States. The first thing to notice is that the effect is zero in the current 
period (at zero lag). This is a direct result of our identification assumption: we imposed the 
condition that Canadian growth has no immediate effect on U.S. growth in order to identify 
the shocks. The second noteworthy result is that the dynamic effect that occurs in the second 
period is much smaller than the effect of the U.S. on Canada. This is as we expected. 

 But how much of this greater dependence of Canada on the United States is really the 
data speaking and how much is our assumption that contemporaneous correlation in shocks 
runs only from the U.S. to Canada? Recall that our identification assumption imposes the 
condition that any “common shocks” that affect both countries are assumed to be U.S. 
shocks, with Canada shocks being the part of the Canadian VAR innovation that is not ex-
plained by the common shock. This might cause the Canadian shocks to have smaller vari-
ance (which it does in Figure 5-2) and might also overestimate the effect of the U.S. shocks 
on Canada. 

 To assess the sensitivity of our conclusions to the ordering assumption, we examine the 
IRFs making the opposite assumption: that contemporaneous correlation in the innovations 
is due to Canada shocks affecting the U.S.  Figure 5-3 shows the graphs of the reverse-
ordering IRFs. As expected, the effect of the U.S. on Canada (lower left) now begins at zero 
and the effect of Canada on the U.S. (upper right) does not.  

 Beyond this, there are a couple of interesting changes when we reverse the order. First, 
note that both shocks now have a standard deviation of about 2.5 rather than the U.S. shock 
having a much larger standard deviation. This occurs because we now attribute the “com-
mon” part of the innovation to the Canadian shock rather than the U.S. shock. Second, after 
the initial period in which the U.S.-to-Canada effect is constrained to be zero, the two effects 
are of similar magnitudes and die out in a similar way. 

 This example shows the difficulty of identifying impulse responses in VARs. The impli-
cations can depend on the identification assumption we make, so if we are not sure which 
assumption is better we may be left with considerable uncertainty in interpreting our results. 
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Figure 5-3. IRFs with reversed ordering 

 

 We can also use Stata’s irf graph command to plot the cumulative effect of a perma-
nent shock to one of the variables. For the preferred ordering this looks like Figure 5-4. Us-
ing the top-left panel, a permanent positive shock of one standard deviation to Canada’s 
growth—an exogenous increase of about 2 percentage points of growth that is sustained over 
time—would eventually cause Canadian growth to be about 3.5 percentage points higher. 
This magnification comes from two effects. First, shocks to Canadian growth tend to persist 
for a period or two after the shock, so growth increases more as a result. Second, a positive 
shock to Canadian growth increases U.S. growth (even with no exogenous shock in the 
U.S.), which feeds back positively on Canadian growth. The same multiplier effect happens 
in the other panels. 
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Figure 5-4. Cumulative IRFs with preferred ordering 

 

 Another tool that is available for analysis of identified VARs is the forecast-error vari-
ance decomposition, which measures the extent to which each shock contributes to unex-
plained movements (forecast errors) in each variable. Figure 5-5 results from the Stata com-
mand: irf graph fevd , irf(L1) ustep(8)and shows how each shock contributes 
to the variation in each variable. All variance decompositions start at zero because there is 
no forecast error at a zero lag. 

  The left-column panels show that (with the preferred identification assumption) the 
Canadian shock contributes about 80% of the variance in the one-period-ahead forecast error 
for Canadian growth, with the U.S. shock contributing the other 20%. As our forecast hori-
zon moves further into the future, the effect of the U.S. shock on Canadian growth increases 
and the shares converge to less than 60% of variation in Canadian growth being due to the 
Canadian shock and more than 40% due to the U.S. shock. The right-column panels indicate 
that very little (less than 5%) of the variation in U.S. growth is attributable to Canadian 
growth shocks in the short run or long run. 
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Figure 5-5. Variance decompositions with preferred ordering 

 

 Like IRFs, variance decompositions can be sensitive to the identification assumptions we 
make. If we compute IRFs and variance decompositions for alternative orderings and find 
that the results are similar, then we gain confidence that our conclusions are not sensitive to 
the (perhaps arbitrary) assumptions we make about contemporaneous causality. If alterna-
tive assumptions lead to different conclusions, we must be more careful about drawing con-
clusions. 

 Figure 5-6 shows the very different results that we get when we reverse the contempora-
neous causal ordering. Now the Canadian shock (which includes the shock that is common 
to both countries under this assumption) explains most (80%) of the variation in Canadian 
growth and much (30%) of the variation in growth in the United States. 

 It may seem frustrating to reach quite different conclusions depending on a potentially 
arbitrary assumption about the direction of immediate causation. In this case, though, the 
differences between the results suggest some possible interpretations.  

 First, the United States has a stronger effect on Canada than vice versa. Interpreting the 
VAR results in favor of Canada’s effect (by putting them first in the order) gives Canada a 
substantial effect on the U.S. but the U.S. shocks are clearly still important for both coun-
tries, but interpreting them in favor of the U.S. effect virtually wipes out the effect of Canada 
on the United States. 
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 Second, because of the way the results vary between orderings, it is clear that much of 
the variation in growth in both countries is due to a common shock. Whichever country is 
(perhaps arbitrarily) assigned ownership of this shock seems to have a large effect relative 
with the other. While this doesn’t resolve the “causality question,” it is very useful infor-
mation about the co-movement of U.S. and Canadian growth. 

 

Figure 5-6. Variance decomposition with reversed ordering 

 

5.5 Cointegration in a VAR: Vector Error-Correction Models 

 In our analysis of vector autoregressions, we have assumed that the variables of the 
model are stationary and ergodic. We saw in the previous chapter that variables that are in-
dividually non-stationary may be cointegrated: two (or more) variables may have common 
underlying stochastic trends along which they move together on a non-stationary path. For 
the simple case of two variables and one cointegrating relationship, we saw that an error-
correction model is the appropriate econometric specification. In this model, the equation is 
differenced and an error-correction term measuring the previous period’s deviation from 
long-run equilibrium is included. 

 We now consider how cointegrated variables can be used in a VAR using a vector error-
correction (VEC) model. First we examine the two-variable case, which extends the simple 
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single-equation error-correction model to two equations in a straightforward way. We then 
generalize the model to more than two variables and equations, which allows for the possi-
bility of more than one cointegrating relationship. This requires a new test for cointegration 
and a generalization of the error-correction model to include multiple error-correction terms. 

5.5.1 A two-variable VEC model 

 If two I(1) series x and y are cointegrated, then there is exist unique α0 and α1 such that 

0 1t t tu y x≡ −α −α  is I(0). In the single-equation model of cointegration where we thought of 

y as the dependent variable and x as an exogenous regressor, we saw that the error-correction 
model 

 ( )0 1 1 0 1 1 0 1 1t t t t t t t ty x u x y x− − −∆ = β +β ∆ + λ + ε = β +β ∆ + λ −α −α + ε  (5.18) 

was an appropriate specification. All terms in equation (5.18) are I(0) as long as the α coeffi-

cients (the “cointegrating vector”) are known or at least consistently estimated. The 1tu −  term 

is the magnitude by which y was above or below its long-run equilibrium value in the previ-

ous period. The coefficient λ (which we expect to be negative) represents the amount of “cor-
rection” of this period-(t – 1) disequilibrium that happens in period t. For example, if λ is –
0.25, then one quarter of the gap between yt – 1 and its equilibrium value would tend (all else 
equal) to be reversed (because the sign is negative) in period t. 

 The VEC model extends this single-equation error-correction model to allow y and x to 
evolve jointly over time as in a VAR system. In the two-variable case, there can be only one 
cointegrating relationship and the y equation of the VEC system is similar to (5.18), except 
that we mirror the VAR specification by putting lagged differences of y and x on the right-
hand side. With only one lagged difference (there can be more) the bivariate VEC can be 
written 

 
( )
( )

0 1 1 1 1 1 0 1 1

0 1 1 1 1 1 0 1 1

,

.

y
t y yy t yx t y t t t

x
t x xy t xx t x t t t

y y x y x v

x y x y x v

− − − −

− − − −

∆ = β +β ∆ +β ∆ + λ −α −α +

∆ = β +β ∆ +β ∆ + λ −α −α +
 (5.19) 

 As in (5.18), all of the terms in both equations of (5.19) are I(0) if the variables are coin-

tegrated with cointegrating vector (1, –α0, –α1), in other words, if 0 1t ty x−α −α  is stationary. 

The λ coefficients are again the error-correction coefficients, measuring the response of each 
variable to the degree of deviation from long-run equilibrium in the previous period. We ex-
pect λy < 0 for the same reason as above: if 1ty −  is above its long-run value in relation to 1tx −  

then the error-correction term in parentheses is positive and this should lead, other things 
constant, to downward movement in y in period t. The expected sign of λx depends on the 

sign of α1. We expect 1 1/ 0t t xx x −∂∆ ∂ = −λ α <  for the same reason that we expect 

1/ 0t t yy y −∂∆ ∂ = λ < : if 1tx −  is above its long-run relation to y, then we expect tx∆  to be neg-

ative, other things constant. 
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 A simple, concrete example may help clarify the role of the error-correction terms in a 
VEC model. Let the long-run cointegrating relationship be t ty x= , so that α0 = 0 and α1 = –

1. The parenthetical error-correction term in each equation of (5.19) is now 1 1t ty x− −− , the 

difference between y and x in the previous period. Suppose that because of previous shocks, 

1 1 1t ty x− −= +  so that y is above its long-run equilibrium relationship to x by one unit (or, 

equivalently, x is below its long-run equilibrium relationship to y by one unit). To move to-

ward long-run equilibrium in period t, we expect (if there are no other changes) ∆yt < 0 and 

∆xt > 0. Using equation (5.19), ∆yt changes in response to this equilibrium by 

( )1 1y t t yy x− −λ − = λ , so for stable adjustment to occur λy < 0; y is “too high” so it must de-

crease in response to the disequilibrium. The corresponding change in ∆xt from equation 

(5.19) is ( )1 1x t t xy x− −λ − = λ . Since x is “too low,” stable adjustment requires that the re-

sponse in x be positive, so we need λx > 0. Note that if the long-run relationship between y and 

x were inverse (α1 < 0), then x would need to decrease in order to move toward equilibrium 

and we would need λx < 0. The expected sign on λx depends on the sign of α1. 

 If theory tells us the coefficients α0 and α1 of the cointegrating relationship, as in the case 
of purchasing-power parity, then we can calculate the error-correction term in (5.19) and es-
timate it as a standard VAR. However, we usually do not know these coefficients, so they 
must be estimated.  

 Single-equation cointegrated models can be estimated either directly or in two steps. We 
can use OLS to estimate the cointegrating relationship—the cointegrating vector (1, α0, α1)—
and impose these estimates on the error-correction model, or we can estimate the α coeffi-
cients jointly with the β coefficients on the differences. In a VAR/VEC system, separate es-
timation of the cointegrating relationship is likely to be problematic because it may be im-
plausible to assume that either x or y is even weakly exogenous. (However, note that the 
identifying restrictions we impose to calculate IRFs require exactly this assumption.) Thus, it 
is common to estimate both sets of coefficients simultaneously in a VEC model. We shall see 
an example of VEC estimation and interpretation shortly, but first we consider models with 
more than two variables and equations because these models raise important additional con-
siderations. 

5.5.2 A three-variable VEC with (partially) known cointegrating relationships 

 We now consider a vector error-correction model with three variables x, y, and z. This 
situation is more complex because the number of linear combinations of the three variables 
that are stationary could be 0, 1, or 2. In other words, there could be zero, one, or two com-
mon trends among the three variables.  

 If there are no cointegrating relationships, then the series are not cointegrated and a VAR 
in differences is the appropriate specification. There is no long-run relationship to which the 
levels of the variables tend to return, so there is no basis for an error-correction term in any 
equation. 



Chapter 4:  Vector Autoregression and Vector Error-Correction Models 97 

 There would be one cointegrating relationship among the three variables if there is one 
long-run equilibrium condition tying the levels of the variables together. An example would 
be the purchasing-power-parity (PPP) condition between two countries under floating ex-
change rates. Suppose that P1 is the price of a basket of goods in country one, P2 is the price 
of the same basket in country 2, and X is the exchange rate: the number of units of country 
one’s currency that buys one unit of country two’s. If goods are to cost the same in both 

countries—purchasing-power parity—then 1 2/X P P= . Any increase in prices in country 
one should be reflected, in long-run equilibrium, by an increase of equal proportion in the 
amount of country-one currency needed to buy a unit of country-two’s currency.  

 In practice, economists have to rely on price indexes whose market baskets differ across 
countries, so the PPP equation would need a constant of proportionality to reflect this differ-

ence: 1 2
0 /X A P P= . Denoting logs of the variables by small letters, this implies that 

 1 2
0x p p= α + −   

is a long-run equilibrium condition toward which the variables should tend.  

 We could estimate a VEC system (with one lag, for simplicity) for the evolution of the 
three variables x, p1, and p2 with one cointegrating relationship (with some known coeffi-
cients): 

 

( )
( )
( )

1 2 1 2
0 1 1 11 1 21 1 1 0 1 1

1 1 2 1 2 1
10 1 1 1 111 1 121 1 1 1 0 1 1

2 1 2 2 2 2
20 2 1 1 211 1 221 1 2 1 0 1 1 .

x
t x xx t x t x t x t t t t

t x t t t t t t t

t x t t t t t t t

x x p p x p p v

p x p p x p p v

p x p p x p p v

− − − − − −

− − − − − −

− − − − − −

∆ = β +β ∆ +β ∆ +β ∆ + λ −α − + +

∆ = β +β ∆ +β ∆ +β ∆ + λ −α − + +

∆ = β +β ∆ +β ∆ +β ∆ + λ −α − + +

 (5.20) 

If the exchange rate is out of equilibrium, say, too high, then we expect some combination of 
adjustments in x, p1, and p2 to move back toward long-run equilibrium. The error-correction 

coefficients λx, λ1, and λ2 measure these responses. Using the logic described above, we 

would expect λx and λ2 to be negative and λ1 to be positive. 

 This does not exhaust the possible degree of cointegration among these variables, how-
ever. Suppose that country one is on a gold standard, so that the price level in that country 

tends to be constant in the long run.
2
 This would impose a second long-run equilibrium con-

dition—a second cointegrating relationship—on the variables: 1
1p = α . The VEC system in-

corporating both cointegrating relationships would look like 

                                                      
2
 Another example we could use would be a fixed-exchange-rate system in which one country keeps x 

near a constant level in the long run. 
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( ) ( )
( ) ( )

1 2 1 2 1
0 1 1 11 1 21 1 1 0 1 1 1 1

1 1 2 1 2 1 1
10 1 1 1 111 1 121 1 1 1 0 1 1 1 1 1

2 1 2
20 2 1 1 211 1 221 1 2 1

x
t x xx t x t x t x t t t x t t

t x t t t t t t t t

t x t t t t

x x p p x p p p v

p x p p x p p p v

p x p p x

− − − − − − −

− − − − − − −

− − − −

∆ = β +β ∆ +β ∆ +β ∆ + λ −α − + + µ −α +

∆ = β +β ∆ +β ∆ +β ∆ + λ −α − + + µ −α +

∆ = β +β ∆ +β ∆ +β ∆ + λ ( ) ( )2 2 1 2
0 1 1 2 1 1 .t t t tp p p v− − −− α − + + µ −α +

(5.21) 

 In equations (5.20) and (5.21) we started with a system in which we “knew” the nature 
of the cointegrating relationship(s) among the variables. It is more common that we must test 
for the possibility of cointegration (and determine how many cointegrating relationships ex-
ist) and estimate a full set of α parameters for them. We now turn to that process, then to an 
example of an estimated VEC model. 

5.5.3 Testing for and estimating cointegrating relationships in a VEC 

 The most common tests to determine the number of cointegrating relationships among 
the series in a VAR/VEC are due to Johansen (1995). Although the mathematics of the tests 
involve methods that are beyond our reach, the intuition is very similar to testing for unit 
roots in the polynomial representing an AR process.  

 If we have n I (1) variables that are modeled jointly in a dynamic system, there can be up 
to n – 1 cointegrating relationships linking them. Stock and Watson (ref) think of each coin-
tegrating relationship as a common trend linking some or all of the series in the system. we 
shall think of “cointegrating relationship” and “common trend” as synonymous. The cointe-
grating rank of the system is the number of such common trends, or the number of cointe-

grating relationships.
3
  

 To determine the cointegrating rank r, we perform a sequence of tests. First we test the 
null hypothesis of r = 0 against r ≥ 1 to determine if there is at least one cointegrating rela-
tionship. If we fail to reject r = 0, then we conclude that there are no cointegrating relation-
ships or common trends among the series. In this case, we do not need a VEC model and 
can simply use a VAR in the differences of the series. 

 If we reject r = 0 at the initial stage then at least some of the series are cointegrated and 
we want to determine the number of cointegrating relationships. We proceed to a second 
step to test the null hypothesis that r ≤ 1 against r ≥ 2. If we cannot reject the hypothesis of 
no more than one common trend, then we estimate a VEC system with one cointegrating 
relationship, such as (5.20). 

 If we reject the hypothesis that r ≤ 1, then we proceed further to test r ≤ 2 against r ≥ 3, 
and so on. We choose r to be the smallest value at which we fail to reject the null hypothesis 
that there are no additional cointegrating relationships. 
                                                      
3
 For those familiar with linear algebra, the term “rank” refers to the rank of a matrix characterizing 

the dynamic system. If a dynamic system of n variables has r cointegrating relationships, then the rank 
of the matrix is n – r. This means that the matrix has r eigenvalues that are zero and n – r that are not. 
The Johansen tests are based on determining the number of nonzero eigenvalues. 
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 Johansen proposed several related tests that can be used at each stage. The most com-
mon (and the default in Stata) is the trace statistic. The Stata command vecrank prints the 
trace statistic or, alternatively, the maximum-eigenvalue statistic (with the max option) or 
various information criteria (with the ic option). 

 The Johansen procedure invoked in Stata by the vec command estimates both the pa-

rameters of the adjustment process (the β coefficients on the lagged changes in all variables) 
and the long-run cointegrating relationships themselves (the α coefficients on the long-run 
relationships) by maximum likelihood. We must tell Stata whether to include constant terms 
in the differenced VEC regressions—remember that a constant term in a differenced equa-
tion corresponds to a trend term in the levels—or perhaps trend terms (which would be a 
quadratic trend in the levels). It is also possible to include seasonal variables where appropri-
ate or to impose constraints on the coefficients of either the cointegrating relationships or the 
adjustment equations. 

 Once the VEC system has been estimated, we can proceed to calculate IRFs and vari-
ance decompositions, or to generate forecasts as we would with a VAR. 
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