
Space-time influenza model with demographic, mobility, and
vaccine parameters

E. Cahill, R. Crandall, L. Rude1

and

A. Sullivan2

19 Oct 05

Abstract: We present a space-time influenza model applicable to a large spatial region hav-
ing variable population density. Spatial dependence is embodied in mobility effects (neigh-
borhood diffusion and long-range travel), while temporal dependence arises from epidemic
parameters and seasonal envelope. In discrete form, the model has been implemented to
solve a nonlinear-diffusion system on each 10 km2 pixel of a USA map. The model software
implementation (URL download [8]) allows users to adjust a number of model parame-
ters, including vaccination level in a given age group. We find that typical cumulative-case
and mortality rates can be successfully modeled in stable fashion, in spite of the extensive,
per-pixel computations. Moreover, our results on vaccination-mortality correlation are in
essential agreement with previous works on smaller domains [32]. Our model should be
deemed experimental, not as a policy generator itself but as a starting point for researchers,
health workers, and policy makers interested in microscopic aspects of a national epidemic.
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Background

Influenza has been a priority public health concern since it was identified as the cause of
1918’s lethal pandemic. Avian flu circulating in Asia highlights our ongoing susceptibility
to potentially pandemic strains, and recent disruptions in flu vaccine supply reveal vulner-
abilities coping with a seasonal illness that kills an estimated 36,000 persons each year in
the United States alone [29]. Policy makers need additional tools to assess the impact of
influenza—whether an epidemic or pandemic strain. Here we present an extensively coupled
space-time model appropriate for addressing questions of scale related to host and virulence
factors for influenza.

Mass-action and mean-field models traditionally used by epidemiologist (see for example
[1][2][17][22][24]) have been adapted in numerous ways to try to capture the spatial and
temporal aspects of epidemic disease [13]. Some authors have used parameters to vary het-
erogeneity, mixing or variable population densities (e.g., [33]). Lattice models (e.g. [25])
more specifically address spatial issues by allowing interactions among neighboring cells in
the lattice, including stochastic models where individuals interact on a Monte-Carlo basis
(see [15][32]). Recent work on complex networks has emphasized the importance of stochas-
ticity and spatial structure [31]. By exploiting recent advances in computing resources, such
as the ability to involve many floating-point variables on each of many cells, we forge a
hybrid approach to couple thousands to millions of quasi-autonomous populations that are
specifically related through local, neighborhood, and long-distance travel parameters. This
hybrid combines traditional mass-action principles with lattice and stochastic principles in
a space-time model.

Our approach for a space-time influenza model describes annual scenarios for the United
States of America (USA). We define this model—outlining our methods and underlying
models—and describe the software (available at [8]) for its implementation. While we pro-
vide example results from software runs to demonstrate the utility of user’s ability to vary
parameters like age-specific vaccination prevalence, we encourage readers to run this software
with their own scenarios of interest.

2



Methods and Results

Model assumptions

We start with the assumption of a stable population wherein at any time, t, the following
subpopulations are represented:

• S(t): Number of susceptibles.

• Ii(t): Number of infecteds in one of two disease states, i = 1, 2.

• R(t): Number of recovereds.

• D(t): Number of dead.

This overall population is distributed with density p(x, y) over a geographical domain D.
The domain D need not be connected (e.g., our implementation D includes Alaska and
Hawaii). Stable density p is assumed, as we apply the model over one year on the notion
that a single dominant influenza strain is in effect for that period in the United States (see
[4] for dominant-strain rationale).

Every small land patch of 10 km2 is given its own susceptible-infected-recovered SIR prop-
agation system. An extensively coupled system is created in that the USA will consist of
roughly 106 such patches that independently evolve in time—except for neighborhood and
travel interactions, as below. A contracted SIR model is solved on each patch. The sta-
tistical character of real-world SIR propagation is embodied in parametric noise in that
disease-coupling parameters are given a mean about which fluctuations are mandated. On
issues of population and demographic data, see the discussion and references following our
ultimate model equations (5.1). It is of interest that in this fashion we end up iterating
several million space-time differential equations per week of epidemic. As a practical matter
one such epidemic week requires a few seconds of CPU time on a modern PC.

Demographic age classes are taken into account. In our model, the classes, {i, c, m, o},
represent the following (interval notation [x, y) here means x ≤ age < y):

• infant i : age ∈ [0.5, 5).

• child c : age ∈ [5, 18).

• middle m : age ∈ [18, 65).

• old o : age ∈ [65,∞).
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When we refer to a space-time variable, say SA(x, y, t), the subscript A represents one of the
age classes, i.e. A ∈ {i, c, m, o}. Thus, every 10 km2 spatial land-patch has at any moment
susceptibles SA, infecteds IA, recovereds RA, and dead DA.

The model is initialized to susceptible densities SA(x, y) = fAp(x, y) on each land patch,
where fA is the demographic population fraction for each A ∈ {i, c, m, o}. The disease
coupling parameter, β, represents person to person (i.e. intracell, or intrapixel if you will)
infectivity of influenza and rate of contact among susceptibles and infecteds with homogenous
mixing in each small land patch (pixel). Among infecteds, we initially assume two disease
states, defined by infectivity of each state. Because the incubation period for influenza is
short and persons can be infectious prior to symptom onset, no incubation period is specified.
Rather disease state 1 is defined as early in disease when persons are most infectious; and
disease state 2, later in infection when persons are less infectious. Coupling between infecteds
and susceptibles is done through cross-age parameters delineating distinct combinations. For
two, possibly distinct age classes A, B ∈ {i, c, m, o} a parameter βAB represents infection
coupling between age classes A, B. For example, βio is coupling for infants infected by old.

Human mobility across spatial patches is included through a tunable spatial-diffusion term.
This term and the assumption of a spatially varying population density p(x, y) induce spatial
dependence in the model. A travel parameter specifically determines long-range infectious
transfer. Region-dependent seasonal contours dynamically modify relevant model algebra as
described below. The model assumes that there is an initial state with some disease and
depicts a year-long epidemic.

The analysis to follow, though specially tailored for extensive computation, is based on
known manipulations, starting from the pioneering [18] to modern method reviews such as
[10]. We start from a spatially homogeneous, two-stage influenza model. For our initial
model, we adopt the following time-independent variables indexed by disease states, k equal
to 1 or 2:

• βk: Disease coupling between susceptibles and infecteds for disease state k.

• γk: Rate of disease progression.

• µk: Mortality rate out of a given state.

Note that 1/γi is the mean time an individual spends in state i. Our simplified SIR-type
model in the absence of vaccination is as follows:

dS

dt
= −S(β1I1 + β2I2), (3.1)

dI1

dt
= +S(β1I1 + β2I2)− γ1I1 − µ1I1,
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dI2

dt
= +γ1I1 − γ2I2 − µ2I2,

dR

dt
= +γ2I2,

dD

dt
= +µ1I1 + µ2I2.

where we always have
d

dt
(S + I1 + I2 + R + D) = 0,

with the total population conserved throughout time.

Model contraction

To cut down on computing resources—such as CPU and memory—we adopt a one-state
model with renormalized parameters. Happily, proper renormalization yields approximate
equivalence to the two-state model, as we shall see. From the third equation in system (3.1),
we can define I = I1 + I2 and write

dI2

dt
= +γ1I − ΓI2, (3.2)

with a new parameter, Γ = γ1 + γ2 + µ2. The relation (3.2) may be integrated formally, to
obtain

I2(t) = γ1e
−Γt

∫ t

0
eΓτI(τ)dτ,

on the presumption I2(0) = 0. But this integral relation amounts to a so-called low-pass
filter on the total infection I, i.e. an exponential weighting of I(t) backward in time. We
might therefore expect that for significant stretches of time we have

I2 ≈
γ1

Γ
I.

Given this approximation, it is generally possible to choose renormalized parameters for a
one-state system to obtain very much the same time evolution for I as for the sum I1 + I2 in
the original two-state system. Even when the integral approximation for I2 is inexact, the
overall dynamical trajectory of the sum I1(t)+I2(t) can still be well approximated by choos-
ing appropriate new parameters in a one-state system, with I(t) being the approximating
trajectory (Figure 1).

We subsequently adopt a suitably contracted, one-disease model system

dS

dt
= −βSI, (3.4)

dI

dt
= +βSI − γI − µI,

dR

dt
= +γI,
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dD

dt
= +µI.

While appearing to be a simpler SIR-type model, we are actually approximating our pa-
rameters in terms of the original, two-state-influenza parameters. With the use of Γ, the
following additional parameter approximations ensue:

β = β1 +
γ1

Γ
(β2 − β1),

γ =
γ1γ2

Γ
,

µ = µ1 +
γ1

Γ
(µ1 + µ2).

This one-state system (3.4) is viable for extensive computations on a great many spatial
patches. There is the advantage that good stability is expected. For example, when including
parametric noise (see below) an empirical two-state system is less stable than the one-state
analogue, and that is a computational advantage for the one-state scenario.

For model-contraction with vaccination states, we include a population V (t) of vaccinees.
All vaccinations are a priori, so that the populations of susceptibles and of vaccinees at time
t = 0 are

S(0) = (1− v)S̄(0),

V (0) = vS̄(0),

where S̄(0) is the prevaccination susceptible population, and v is the fraction vaccinated. A
suitable differential system is thus:

dS

dt
= −βSI, (3.5)

dV

dt
= −β(1− θ)V I,

dI

dt
= +βI(S + (1− θ)V )− γI − µI,

dR

dt
= +γI,

dD

dt
= +µI.

Vaccine efficacy, θ, and failure, (1− θ), modify the intensity of disease transmission through
a reduced likelihood of infection among vaccinees. The total susceptible, S̄, is now defined to
be S̄ = S +V . We then contract the model so that S̄ is substituted for S, V by transforming
the first three equations of (3.5) to the system,

dS̄

dt
= −βS̄IJ,
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dI

dt
= +βS̄IJ − γI − µI,

where

J = 1− θ
V (t)

S̄(t)
.

Now, it may be derived that
J(t) = 1− θvK(t),

where

K(t) =
1

1− (1− v)(1− (S(t)/S(0))θ)
.

Note that J(0) = 1−θv. For wide ranges of vaccination prevalence v and efficacy θ, the factor
K(t) is a function of only mild variation. For example, say that the disease is sufficiently
aggressive that half of all nonvaccinated susceptibles become infected, so S(∞)/S(0) = 1/2;
and say that this occurs with efficacy θ = 0.75 (or, if you will, 75%) and that a fraction
v = 0.5 of the initial population is vaccinated. Then

J(0) = 1− θv = 0.635, J(∞) = 0.466,

As these extreme values do not differ significantly in magnitude, we simplify J(t) to be a
new, constant parameter, J , yielding the contracted model:

dS̄

dt
= −β(1− θv)S̄I, (3.6)

dI

dt
= −β(1− θv)S̄I − γI − µI,

dR

dt
= +γI,

dD

dt
= +µI,

which should be reasonably accurate, over a wide range of θ, v, in a sense similar to the effect
shown in Figure 1 for 2 → 1-state contraction. Note that the first equation of (3.6) tells
us that our new, collective-susceptible population S̄ is given a lowered probability 1 − θv
of infection, and it is this term that removes an explicit population V . This contraction is
consistent with the notion that vaccination reduces the probability of infection approximately
by a factor (1−θv). Clearly there are model simplifications of this type for time-varying v, θ,
but because our USA Influenza model assumes vaccination takes place prior to the rapid rise
of the influenza season, we shall take vA, θA as constants, frozen at the first week of the time
evolution.

Finally, because of demographic variation in both vaccination rates and effectiveness, preva-
lence of vaccination, vA, and vaccine efficacy, θA, are both dependent on age class A.
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Space-time model

Keeping the notion of a one-disease-state model, we now posit a space-time system including
diffusion (mobility) and long-range travel of individuals:

• S(x, y, t): Population density at spatial position (x, y), time t.

• I(x, y, t): Infecteds density.

• β: Disease coupling involving local infecteds–susceptibles.

• β′: Disease coupling from diffusion.

• T : Travel coefficient.

We say that p(x, y) is the static population density at (x, y) for all S, I, R, and D, and that D
is the geographical region within the USA over which the spatial integral of infecteds yields
total infecteds at any given time.

A physically reasonable model is embodied in the following differential system:

∂S

∂t
= −S

(
βI + β′∇2I + Tp(x, y)

∫
D

I
)

, (4.1)

∂I

∂t
= +S

(
βI + β′∇2I + Tp(x, y)

∫
D

I
)
− γI − µI,

∂R

∂t
= +γI,

∂D

∂t
= +µI.

The quantity p(x, y) = (S + I + R + D)(x, y, t) is conserved, i.e. time-independent by the
usual argument that the right-hand-sides of (4.1) add to zero. This conservation law holds
even though there is infection caused by long-range travel, summarized in the term

Tp(x, y)
∫
D

I dx dy.

The integration over dx dy is implicit in the display of (4.1). The term depends on how
many infecteds there are nationwide, on the local population (on the assumption, e.g., that
“small cities have small airports”), and on a travel “tendency” T .

This space-time model immediately yields observations of disease propagation. The second
equation of the system (4.1), in absence of travel, say, T = 0, may be written

∂I

∂t
= d∇2I + (βS − γ − µ)I,
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where d := β′S is an instantaneous diffusion constant, so we have a kind of nonlinear diffusion
equation. It turns out that there is a characteristic maximum propagation velocity (see [22]
for a derivation) in a given locale (x, y):

umax =
√

4d(βS − γ − µ),

when the square-root exists, which formally it does if S is sufficiently large. An approxima-
tion for large susceptible population is

umax ≈ 2p(x, y)
√

ββ′.

Thus, disease propagation into a small land patch with only susceptibles is proportional
to the population density, and to the geometric mean of the static- and mobile-coupling
parameters.

Discretization of the space-time model

The primary spatial-effects term in the system (4.1) is the diffusion piece d∇2I. This quantity
can be given a discrete-lattice interpetation as follows. For a function I(x, y) (time t is
fixed here) defined on pixel positions (x, y) with unit spacing, it is a well known difference
approximation that

∇2I ≈ I(x + 1, y) + I(x− 1, y) + I(x, y + 1) + I(x, y − 1)− 4I(x, y),

which we write as
∇2I ≈ −4I +

∑
o

I,

where the sum is over orthogonal neighbors. Because the neighbor operations are not too
computationally expensive, we adopt a more precise approximation

∇2I ≈ −8

3
I +

1

3

′∑
I,

where the
∑′

is now over all eight “king-move” neighboring values of I. This means that
the discrete form of a relevant piece of the first equation in system (4.1) is

βI + β′∇2I ≈ β1 + β2

′∑
I,

where
β1 = β + 8β′, β2 = 3β′. (4.2)

With this discretization rule, and using our previous simplified model equations, we now
present a full, discrete space-time influenza model, this time moving directly to a scenario
that includes vaccination and demographic groups.

In the following definitions, the subscripts 1,2 refer to the assignments (4.2), and we remind
ourselves that subscripts A, B ∈ {i, c, m, o} are age classes.
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• p(x, y) = pi + pc + pm + po: Stable population density at pixel (x, y), over domain D.

• β1AB: Static (local) infection coupling for infection B → A.

• β2AB: Mobile (neighboring) infection coupling for infection B → A.

• θA ∈ [0, 1]: Vaccine efficacy parameter for age class A.

• vA ∈ [0, 1]: Vaccination prevalence of age class A.

• γA: Disease progression rate for age class A.

• µA: Mortality rate due to the disease, for age class A.

• T : Travel coefficient for long-range invasion of infecteds.

• E(x, y, t): Overall seasonal-regional envelope.

• η(x, y, t): A noise term recognizing erratic character of coupling.

Now the dynamical space-time variables are taken to be

• SA(x, y, t): Susceptible population of age class A at pixel (x, y).

• IA(x, y, t): Infecteds of age class A at pixel (x, y).

• I(x, y, t) := Ii + Ic + Im + Io: Total infecteds at pixel (x, y).

• RA(x, y, t): Recovereds of age class A at pixel (x, y).

• DA(x, y, t): Deaths in age class A at pixel (x, y).

Synthesizing all the previous ideas and methods, our influenza model system can now be
displayed. There is one disease state, and no explicit vaccinated population tracked; instead,
we use our previous conclusion that similar phase trajectories will accure for appropriate
rescalings of key parameters. As usual, A ∈ {i, c, m, o} denotes an age class. The change
∆X for any variable X will correspond to a one-week increment of time, with all β, γ, µ
parameters appropriately normalized:

∆SA = −SA(1− θAVA)

∑
B

β1ABIB +
∑
B

β2AB

′∑
IB + Tp(x, y)

∑
D

I

 (1 + η)E, (5.1)

∆IA = −∆SA − γAIA − µAIA,

∆RA = +γAIA,
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∆DA = +µAIA.

Here, the total infected population is a discrete sum,
∑

D, over all domain pixels. Note once
again the sum of all four ∆-terms is zero, so that total pixel population

∑
A(SA+IA+RA+DA)

is invariant.

Nationwide effects include the seasonal envelope E(x, y, t) which acknowledges seasonal dif-
ferenes in disease coupling likely due to social and environmental effects. The baseline
envelope function E is based on CDC national surveillance data [4]. In addition, during
per-pixel computations, we consider travel invasion as a temporary fluctuation, so that over
say a one-year influenza cycle the basic population p(x, y) is stable, as determined by an
initial population map.

Regarding the population-density data, U. S. Census data was used in a county-density
mode [6] with the national demographic histogram [5] applied uniformly to each region.
More precise, “pinpoint” densities for U. S. cities are available, (e.g., in [7]) but space-
time modeling is problematic when sources are singular. Thus, we adopt county-specific
census data, and use intrinsic noise in two ways. Our noise function ε (Table 1) allows
us to start the space-time density p(x, y, t) at time t = 0 as p(x, y, 0) := p(x, y) · (1 −
ε(x, y)) such that a county has a slightly nonuniform density. A second noise function, η, is
employed during temporal propagation of the model to avoid uniform evolution of all pixels
in a region of uniform population density. To understand the importance of η, consider
a large collection of land-patch pixels under a common seasonal/regional envelope with
equivalent demographics and total population each. A deterministic differential or difference
equation (say the first equation in 5.1 without the (1 + η) term) would force all collected
pixels to evolve in absolute unison. Such evolution would be unrealistic, and this synchrony
could yield untoward resonance effects. To address this problem we use RMS noise that is
essentially equivalent to fluctuations attendant on a truly discrete model of individuals. In

our implementation, the RMS value
√
〈η2〉 was set on the basis of numerical experiments

over a moderately populated collection of pixels whose individuals sustain an epidemic in
probabilistic fashion. Ultimately, each of our 10 km2 pixels in a given county starts with a
nonuniform population, and as the difference equations propagate disease, like pixels behave
slightly differently.

In our model (5.1), βjAB for j = 1, 2 is the infection coupling for a B → A infection. We
specify matrices of such β parameters in the form:

{β1AB} = β1


ρσ ρσ σ σ
ρτ ρτ τ τ
ρ ρ 1 1
ρ ρ 1 1

 , (5.2)

{β2AB} = β2


σ σ σ σ
τ τ τ τ
1 1 1 1
1 1 1 1

 .
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Here, the first row of a matrix corresponds to fixed A = i and ranging B ∈ {i, c, m, o}. Thus,
model (5.1) as intended for implementation involves five coupling parameters, β1, β2, ρ, σ, τ..
The three parameters ρ, σ, τ can be used to amplify disease coupling by age class, sub-
sequently affecting infection acquisition in certain age classes (e.g., i, c) and the infection
threat of one class on another.

Software implementation

We implemented the system (5.1) as USAFluModel v1.4 [8], on Mac OS X v. 10.3x. The
discrete space-time model is solved on every pixel independently, except of course for the
nighbor terms

∑
k I and the travel invasion term proportional to T . With 1 GHz. processor,

one week of influenza propagation across the full USA domain requires a few seconds of
CPU; the full year, a few minutes of CPU.

Baseline influenza parameters used are directly from or calibrated to those defined by Wey-
cker, et al. [32] (Table 1). After initialization, one is free to adjust the parameters in the
parameter panel (Figure 3). Once parameters have been set the model can then be run,
always starting in a week in October of any year, with the disease progression modeled via
pixel coloring. Loosely speaking—for we do amplify certain colors for visual convenience—
the colorings are:

• The green pixel channel is proportional to remaining susceptibles (Si + Sc + Sm + So).

• The red pixel channel is proportional to infecteds (Ii + Ic + Im + Io).

• The blue pixel channel is proportional to recoverds (Ri + Rc + Rm + Ro).

Results from software runs

We report herein influenza-related mortality under four scenarios: an average influenza year
in the United States based on 1990 through 2003 flu seasons; an otherwise average year from
this period in which a higher then average number of children are vaccinated; an otherwise
average year from this period in which long-distance coupling is decreased; and an otherwise
average year from this period in which neighborhood coupling is decreased.

In an average flu year based on default parameters for our first scenario, cumulative in-
fluenza cases numbered about 32,000,000, while total deaths numbered about 36,000 (Table
2). Increasing the prevalence of children vaccinated (age classes i, c) reduce morbidity and
mortality; and the more children and infants vaccinated, the greater the effect. Reduced
long-range travel slightly lowers total cases and deaths. However, reduced neighborhood
coupling results in case and death totals that are roughly 40 percent below the values re-
sulting for the default parameters. Only a very high prevalence of vaccination in age classes
i and c has a greater effect on morbidity and mortality.
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The pattern of morbidity seen across the U.S. reflects that the total numbers are not the
whole picture. Mid-way through flu season, a patchwork of heavily infected regions and
smaller pockets illustrate distinctly local impacts (Figure 4). Toward the end of a one-year
cycle, recovereds dominate nationwide (Figure 4). The software allows manual blow-up of
any region, and after a whole year’s run, results are reported (Figure 5).

Discussion

The space-time model and concurrently developed software described here will hopefully aid
policy makers in their understanding of the annual influenza epidemic. (For some discliamers,
see the remarks at the end of this section.) Power for the end-user comes from control over
a number of model parameters, allowing the exploration of multiple possible outcomes. The
computational issues addressed in our approach highlight a balance between the intracacy
and exactness of more epidemiologically detailed models with contractions and simplified
disease assumptions to allow for computational complexity ([13]). While we rely on real-
world data to establish baseline parameter values, the power of this model comes from the
patterns evolved through computational effort—not from detailed estimates of incompletely
defined quantities like transmissibility.

Regarding the specific findings of our model, our first scenario was used to define fixed
parameters, and as such would obviously match known estimates of influenza mortality. The
related rates of morbidity are difficult to verify, as influenza is not a nationally notifiable
condition. However, given an estimated 200,000 influenza-related hospitalizations each year
[3][29], it is reasonable to expect another 100-200 community cases of more mild illness for
each hospitalization [19]. Also, our morbidity estimate for all cases is within the range
of other similarly broad estimates [21]. In our second scenario, wherein the prevalence of
vaccinated children is increased, we find reasonable agreement with other models, notably
that of Weycker, et al. [32]. These consistencies give us confidence about the behavior of our
model and the results of our other scenario. Given the relationship of the beta parameters,
the large impact of reduced neighborhood coupling is difficult to interpret. However, if one
can assume that certain unspecified biological aspects of β are consistent within age class
for the major influenza strain in a given year, much of the effect of adjusting neighborhood
coupling can be attributed to factors impacting the likelihood of contact between infecteds
and susceptibles. These factors could include public health interventions like isolating ill
persons at home or decreasing interactions among people in any location like work, school,
or perhaps nursing homes.

As inferred above, one of the key simplifications in this model relates to the development of
the set of β parameters. These disease coupling parameters represent potentially complex
micro-level interactions. Contributors to disease coupling include the average likelihood of
infection given exposure to an agent, and the likelihood of the exposure itself. The former is
complicated by the proximity and duration of exposure; the latter, by the need to address
coupling both within and among domains. The sheer complexity of these issues—both
theoretical and computational—necessitated the use of a de facto set of β’s in this current
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version of the software. The parameter values applied were based on relationships among
available pieces of real-world data. However, a remaining challange to address in future
models of this lineage is to break up β into component parts. Not only would this next step
provide parameters that can be more directly adjusted and more readily interpreted, but it
would also help in evaluating the accuracy of the current values. For example, if the current
values derived were consistent with reproductive ratios (R0’s) on the order of 1’s to 10’s, we
would appear to have developed a reasonable estimate; if they were consistent with R0’s on
the order of 100’s or 1000’s we would need to seriously reexamine our assumptions [20] [14]
[28] [26] [12].

We make assumptions in the stability of our population. First, by excluding birth and death
rates, we are assuming a stable, closed population for the course of the year in which the
model is run. We also assume a degee of stability in underlying demographic information
between census periods. Both of these assumptions are reasonable at the national level,
though there may be localities where such assumptions are invalid. We simplified the notion
of spatial population density to reduce considerable computations in several ways, with
noise functions acting as best estimates on expected fluctuations. Along these lines, we
acknowledge that certain local community or cultural effects—such as school crowding, etc.—
are absent from the model. Noise effects and variable disease coupling make local variations
implicit in the model, and allow for useful, scaled results at the national level. Naturally,
more refined models can go a long way in lifting these simplifications, though at the cost of
deeper computation.

The model contraction itself also yields a number of interesting observations. One important
conclusion is that the new, single-disease-state parameter γ is a perturbed-half-harmonic
mean of γ1, γ2. That is, for small µ2 one has 1/γ ≈ 1/γ1 + 1/γ2, as in the combination of
parallel resistors in electronic networks. In this way the model (3.4) is taking into account the
harmonic addition of disease progression rates, in order to allow—to a good approximation—
the contraction to just one disease state (one variable, I(t)). Along these lines, the system
(3.4) was adopted for the time-dependent portion of our software implementation, with
certain CPU, memory, precision, and stability advantages. For example, certain parameters
are allowed to drift, or possess noise, but the basic structure of the time-dependent system
remains that of (3.4). Just as a 2-disease-state model can be contracted to an approximately
equivalent 1-disease-state model (provided the disease progression and mortality parameters
are suitably rescaled), a vaccination model can be contracted by rescaling the infection
coupling β to be vaccine-dependent, i.e. to involve just one susceptible state that effectively
contains the vaccinateds. Based on our numerical experiments, other complications (more
than two disease states, vaccinated infecteds having a distinct disease coupling back to
susceptibles, etc.) can usually be contracted.

It is also worth noting that disease propagation speed into a purely susceptible region is
proportional to the population density, and to the geometric mean of the static- and mobile-
coupling parameters. There exists theories of “epizootic waves,” mainly for mammals such
as rabid foxes [22]. We are not saying that influenza epidemics will appear as mixed, explicit
waves, but it is valuable to keep in mind that in any suitable space-time model, the disease
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should not propagate faster than a certain limit such as umax. The telling fact is, once
both space and time are involved in any model, there must always be a way to combine
parameters to get entities of physical dimension length/time. Our maximum speed umax is
one such entity. Indeed, letting the symbol L denote length, and T time, we have physical
dimensions:

β : L2/T ; β′ : L4/T,

where both of these can be gleaned from the differential form (4.1), recalling that S, I are
each densities and so have dimension L−2. Being as p(x, y, t) has dimension L−2 also, we
find sure enough: the dimension of umax is L/T , as a speed always must be.

As with all epidemiologic mass-action models, the power of this model also derives from its
organization of theory into context for host/pathogen interactions, not in providing exact
predictions of what will be. Thus, we do not assume that our discrete space-time model
as implemented would be predictive on any absolute measure, such as infant (ages 0-5)
mortality. Rather, we do expect useful results on questions such as “What is the approximate
fractional decrease in deaths if vaccination prevalence is doubled for each age group?” Or:
“What is the effect of vaccinating all children over 6 months old?” We could in future work
also seek to include adjustable variables for the impact of use of antivirals as a measure to
combat the affects of flu. We expect that modeling year-to-year variations of a recurring
epidemic should be possible, yet more research is needed to include emergent mutants, use of
neurominidase inhibitors, and nonrespiratory spread as with avian influenza viruses. Finally,
another area for future research is to install into the model some knowledge of scale-free
networks. Other attempts at epidemic modeling are quite complementary to ours in this
respect: By focusing on contact logic, social networking, and so on to determine epidemic
potential we can provide a more complete picture of our human condition.

Another interesting direction for future research is to model yet more microscopically. Our
present software implementation shows that it is possible to model an entire nation on a
per-pixel basis. But computational resources have reached the point where finer population
density data and regional dependence of demographics should be within reach. In fact, the
whole issue of population density as it appears in the governing equations is profound. For
one thing, we have yet no satisfactory theory of the interplay between population density
and the neighborhood diffusion parameter.

We close with some appropriate scientific disclaimers. This model—together with its software
implementation [8]—should be taken as experimental. That is, knowing how delicate health-
policy issues can be—especially for a large population—we present this model in the following
spirit: We are endeavoring to answer the question ”How can a national model be constructed
with sufficient attention to the microscopic aspects?” Thus, our model stands as a kind of
conceptual complement to, say, a classical SIR model (with just a few variables for one
gigantic, national cell) over one influenza season. Along such lines, various issues have been
pointed out to us authors—such as whether it would be better to model everything in discrete,
cellular-automaton (CA) fashion and not to mix mean-field and diffusion models, as we have
done; or whether to refine even further the coupling matrix {β1AB} including possible spatial
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sensitivity; or how to render the travel term with more attention to geographical concerns,
such as urban/suburban mobility, and so on. We take it as promising that our vaccine-
induced mortality reductions are in essential agreement with other works on smaller spatial
domains ([32]); yet again, we stress that our model should not itself dictate policy, but should
open up research dialogue on how we might model microscopically a national epidemic.
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Figure 1: The concept of model contraction. The left-hand plot is for a typical manifestation
of system (3.1), and so with two infectious densities I1, I2. The right-hand plot is of a one-
state system with essentially equivalent behavior because of rescaled parameters, as in the
contracted system (3.4). Similar contraction is possible for vaccination states, as in the
contracted model (3.6).
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Figure 2: The initialization map, setting per-pixel population p(x, y). Some initial infection
is posited according to density statistics.
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Figure 3: The parameter panel, showing default values pertinent to the known influenza
statistics of 2003.

19



Figure 4: The Eastern seaboard in mid-February (left) with the given default parameters.
There are some low-infection (green or light green), moderate infection (yellow pixels), and
heavy infection (reddish) areas. Later, in August (right) areas of recovery (bluish land pixels)
are evident (see also Figure 5).
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Figure 5: The Oregon–Washington region in May, showing areas of recovery (bluish), and
a sheen of underlying noise effects (i.e., colors are not entirely uniform across regions).

Figure 6: The software reports, for the default pameters, some 30 million cumulative cases,
and some 30 thousand deaths, showing age-class deaths in detail.
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Parameter Default value Comments
pA(x, y) — Spatial density from Census data [5][6]

β1 0.00057 Local-infection (o, o) coupling
β2 0.000055 Neighborhood (o, o) coupling
ρ 1.4 Multiplier for i, c infecteds (equ. (5.2) and [32])
σ 1.4 Multiplier for i susceptibles (equ. (5.2) and [32])
τ 1.6 Multiplier for c susceptibles (equ. (5.2) and [32])
θA {0.75, 0.75, 0.75, 0.6} Vaccine efficacy, age classes A ∈ {i, c, m, o}
vA {0.05, 0.05, 0.23, 0.68} Vaccination incidence, A ∈ {i, c, m, o}
γA {0.69, 0.69, 0.69, 0.69} Disease progression rate, A ∈ {i, c, m, o} [32]
µA {3, 1, 9, 800} · 10−5 Mortality rate, A ∈ {i, c, m, o}
T 0.05 Travel coefficient

E(x, y, t) −−− Seasonal envelope function, [4]√
〈η2〉 0.07 RMS noise value (see text after (5.1))√
〈ε2〉 0.05 RMS noise value (see text after (5.1))

Table 1: Default parameters for the model (5.1). Except for population density pA, seasonal
envelope E, and RMS noise figures for η, ε all parameters are user-adjustable, as in Figure
3. Note that, via our matrix relation (5.2), all possible disease couplings are determined by
parameters β1, β2, ρ, σ, τ . All rate parameters assume a time differential of one week. For
example, µA has units of individual risk per week. Our default values follow when possible
the data given in the recent treatment [32].

Run vi vc T β2 Cases Deaths
Default run D D D D 32100000 36200

Increased infant-child vaccination 0.20 0.20 D D 23800000 26200
Increased infant-child vaccination 0.50 0.50 D D 7860000 8810

Reduced travel D D 0.016 D 30500000 34800
Reduced neighborhood coupling D D D 0.000044 18800000 20500

Table 2: Results of running USAfluModel 1.4 [8] for one year, with certain specified adjust-
ments (D = default value from Table 1). Mean values of cases and deaths over 15 runs for
each table row. Standard deviations are nonzero across runs, because the model does have a
stochastic component to avoid false synchrony. Deviations for reported cases/deaths are all
found to be in the region of 0.5%, so the reporting here is done to three significant figures
only.
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