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1. Consider a triangle wave of period T and amplitude A (peak to peak amplitude: 2A).
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Develop the Fourier Series of the triangle wave.

Solution:

We introduce x = ω · t = 2π/T · t, which implies that the relevant break points of the function are
at x1 = ω · (T/4) = π/2 and x2 = ω · (T/2) = π.
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The function is odd, f(−x) = −f(x), so no constant terms or terms of the form cos(nx) [=
cos(2πnt/T ) in the original coordinates] may appear in the solution,

a0 = an = 0. (3)

It remains to determine the bn coefficients. Again due to the symmetry we get equal contribution
from the intervals x = ωt ∈ [−π, 0] and x = ωt ∈ [0, π].

bn =
2
π

∫ π/2

0

(
2A

x

π

)
sin(nx) dx+

2
π

∫ π

π/2

(
2A
[
1− x

π

])
sin(nx) dx

=
4A
π

∫ π

π/2
sin(nx)dx+

4A
π2

[∫ π/2

0
x sin(nx)dx−

∫ π

π/2
x sin(nx)dx

]

=
4A
π

[
−cos(nx)

n

]π
π/2

+
4A
π2

[
sin(nx)
n2

− x cos(nx)
n

]π/2
0

− 4A
π2

[
sin(nx)
n2

− x cos(nx)
n

]π
π/2

=
4A
π

[
−cos(nπ)

n
+

cos(nπ/2)
n

]
+

8A
π2

[
sin(nπ/2)

n2
− π cos(nπ/2)

2n

]
+

4A
π2

[
π cos(nπ)

n

]
=

8A
π2n2

sin
(nπ

2

)
=

8A
π2n2

{
(−1)(n−1)/2 n odd
0 n even

(4)

Therefore, the Fourier Series of a Triangle wave is
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