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Just as the particle Lagrangian from classical mechanics can be used to
deduce properties of the system (conserved quantities, momenta), the field
Lagrange densities are useful even prior to finding the field equations. In
particular, the invariance of a particle action under various transformations
tells us about constants of the motion via Noether’s theorem: If the action is
unchanged by translation, momentum is conserved, if infinitesimal rotations
leave the action fixed, angular momentum is conserved, and of course, time-
translation insensitivity leads to energy conservation. The same sort of
ideas hold for field actions – the invariance of the action under coordinate
transformation, in particular, implies that the field equations we obtain will
satisfy general covariance, i.e. that the field equations will be proper tensors.

The details of integration in generic spaces take a little time to go through,
and we will present a few results that will be more useful later on, but fit
nicely into our current discussion. In the back of our minds is the scalar
Lagrange density, a simple model to which we can apply our ideas.

17.1 Coordinate Transformation

There is one last wrinkle in our classical field Lagrangian. We have seen
that

S =
∫
L(φ, φ,µ) dτ (17.1)

is appropriate for Cartesian spatial coordinates and time, but what if we
wanted to transform to some other coordinate system?

Suppose we are in a two dimensional Euclidean space with Cartesian coor-
dinates xj=̇(x, y)T , so that the metric is just the identity matrix. Consider
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the “volume” integral, in this context:

I ≡
∫
B
f(x, y) dxdy (17.2)

how does it change if we go to some new coordinate system, x′j=̇(x′, y′)T ?
Well, we know from vector calculus that there is a factor of the determinant
of the Jacobian of the transformation between the two coordinates involved
so as to keep area elements equal. The integral written in terms of x′ and
y′ is

I =
∫
B′
f(x′, y′) |det(J)| dx′dy′. (17.3)

We can connect this to familiar objects – for a Jacobian:

J jk = J(xj , x′k) =
∂xj

∂x′k
=̇

(
∂x1

∂x′1
∂x1

∂x′2
∂x2

∂x′1
∂x2

∂x′2

)
, (17.4)

where we view x1(x′1, x′2), x2(x′1, x′2) as functions of the new coordinates.
There is a connection between the Jacobian and the transformed metric –
according to the covariant transformation law

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ =

∂xα

∂x′µ
∂xα
∂x′ν

(17.5)

using the identity-matrix form for gαβ. This means that the new metric can
be viewed as a matrix product of the Jacobian of the transformation

g′µν = Jαµ Jαν (17.6)

and the covariant α in the second term is irrelevant, since we start in
Euclidean space. The interesting feature here is that we can relate the
determinant of the Jacobian matrix to the determinant of the metric –
det(gµν) = (det(Jµν ))2 (I’ve used the tensor notation, but we are viewing
these as matrices when we take the determinant). The determinant of the
metric is generally denoted g ≡ det(gµν) and then the integral transforma-
tion law reads

I ′ =
∫
B′
f(x′, y′)

√
g′ dτ ′. (17.7)
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17.1.1 Example

Take the transformation from Cartesian coordinates to circular: x =
r cos θ, y = r sin θ – the Jacobian is

J jk=̇
( ∂x

∂r
∂x
∂θ

∂y
∂r

∂y
∂θ

)
=
(

cos θ −r sin θ
sin θ r cos θ

)
(17.8)

and the determinant is det(J jk) = r. The metric for circular coordinates
is

gµν=̇
(

1 0
0 r2

)
(17.9)

with determinant g = r2, so it is indeed the case that det
(
J jk

)
=
√
g.

If we think of the integral over a “volume” in this two-dimensional space,∫
dxdy =

∫
r dr dφ, (17.10)

then we can clearly see the transformation: dτ = dx dy is related to
dτ ′ = dr dφ via the Jacobian:

dτ = |J | dτ ′, (17.11)

while the metric determinant in Cartesian coordinates is g = 1, and in
polar, g′ = r2, so we have

g′ = |J |2 g (17.12)

and it is clear that
√
g dτ =

|J |
|J |
√
g′ dτ ′, (17.13)

a scalar.

17.1.2 Final Form of Field Action

There is only one final issue: the signature of the metrics we will be using.
Since our “spaces” are really “spacetimes”, we have a Lorentzian signature
metric – even with Euclidean spatial coordinates, the determinant of gµν
for Minkowski, say, is g = −1, so taking the square root introduces a factor
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of i =
√
−1. To keep our volume interpretation, then, we actually have

| det(Jµν ) | =
√
−g′ for our spacetime metrics.

So we will introduce a factor of
√
−g in all of our actions – this doesn’t

change anything we’ve done so far, since for us,
√
−g has been one until

now, but in the interest of generality, the action for a scalar field theory is

S[φ(xµ)] =
∫
dτ
(√
−g L̄(φ, φ,µ)

)︸ ︷︷ ︸
≡L

, (17.14)

where we have a scalar L̄(φ, φ,µ), the Lagrange density in Euclidean spatial
coordinates, and the new Lagrange density L is just the product of L̄ and√
−g, the Jacobian factor. This is an interesting shift, because while a

density like φ,µ gµν φ,ν is clearly a scalar, we suspect that
√
−g is not, since

dτ is not – the whole point of putting in the
√
−g factor was to make the

integration procedure itself a scalar operation.

17.1.3 Transformation of g

Let’s look at how the determinant of the metric transforms under arbitrary
coordinate transformation. We have:

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (17.15)

and if we view the right-hand side as three matrices multiplied together, then
using the multiplicative property of determinants, det(AB) = det(A) det(B),
we have

g′ = det
(
∂x

∂x′

)2

g (17.16)

and the matrix ∂x
∂x′ is the Jacobian for x′ → x, as above. The Jacobian for

the inverse transformation, taking us from x→ x′ is just the matrix inverse
of ∂x

∂x′ , so that:

g′ = det
(
∂x′

∂x

)−2

g (17.17)

and a quantity that transforms in this manner, picking up a factor of the
determinant of the coordinate transformation is called a tensor density. The
name density, again, connects the role of g to the transformation of volumes
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under integration. We say that a tensor density has weight given by p in
the general transformation:

A′ = det
(
∂x′

∂x

)p
A (17.18)

(for scalar densities) – so the determinant of the metric is a scalar density
of weight p = −2, and the square root is a scalar density of weight −1. The
volume factor itself:

dτ ′ = det
(
∂x′

∂x

)
dτ (17.19)

is a scalar density of weight p = 1. Density weights add when multiplied
together. For example:

√
−g′ dτ ′ =

(
√
−g det

(
∂x′

∂x

)−1
)(

det
(
∂x′

∂x

)
dτ

)
=
√
−g dτ (17.20)

and we see that
√
−g dτ is a density of weight 0, which is to say, a normal

scalar.

Again, if we take our usual L̄ to be a scalar (like φ,µ gµν φ,ν), then L = L̄
√
−g

is a scalar density of weight −1, just right for forming an action.

17.1.4 Tensor Density Derivatives

While we’re at it, it’s a good idea to set some of the notation for derivatives
of densities, as these come up any time integration is involved. Recall the
covariant derivative of a first rank (zero-weight) tensor:

Aµ;ν = Aµ,ν + Γµσν A
σ. (17.21)

What if we had a tensor density of weight p: Aµ? We can construct a true
tensor Aµ = (

√
−g)pAµ from this, then apply the covariant derivative as

above, and finally multiply by
√
−g−p to restore the proper weight – this

suggests that

Aµ;ν = (
√
−g)−p

(
(
√
−g)pAµ

)
;ν

= (
√
−g)−p

(
(
√
−g)pAµ),ν + Γµσν (

√
−g)pAσ

)
= Aµ,ν + Γµσν Aσ +Aµ p

2 g
∂g

∂xν
.

(17.22)
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The advantage of
√
−g in integration comes from the observation that, for

a tensor Aµ1: √
−g Aµ;µ =

(√
−g Aµ

)
,µ
, (17.23)

so we can express the Cartesian divergence theorem:
∫
V ∇·E dτ =

∮
∂V E ·da

in multi-dimensional form:∫
dτ
√
−g Aµ;µ =

∮ √
−g Aµ daµ. (17.24)

Notice also that the covariant divergence of the integrand reduces to the
“ordinary” derivative when

√
−g is involved: (

√
−g Aµ);µ = (

√
−g Aµ),µ.

17.2 Scalar Fields in Spherical Coordinates

Let’s see how all of this works for our scalar field. We have the general field
equations (

∂µ

(
∂L
∂φ,µ

)
− ∂L
∂φ

)
= 0, (17.25)

and if we take the usual four-dimensional (ct, x, y, z) flat coordinates, then

L =
1
2
φ,µ g

µν φ,ν
√
−g =

1
2
φ,µ g

µν φ,ν (17.26)

and we recover

∂µ ∂
µφ = − 1

c2
∂2φ

∂t2
+∇2φ = 0. (17.27)

But suppose we have in mind spherical coordinates? Then

gµν=̇


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (17.28)

and
√
−g = r2 sin θ. We have

∂µ

(
gµβ
√
−g φ,β

)
= 0. (17.29)

1This relies on the two properties of derivatives:
√
−g;µ = 0 which is pretty clear via

the chain rule, and Aµ
;µ = 1√

−g (
√
−g Aµ),µ.
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Separating out the temporal and spatial portions, this gives

− 1
c2
∂2φ

dt2
+∇2φ = 0 (17.30)

where now the field φ = φ(t, r, θ, φ) and the Laplacian refers to the spherical
one.

This is an interesting development – we started with a Lagrange density
that made the action a scalar, and now we discover that the field equations
themselves behave as tensors. Appropriately, the field equations have the
same form no matter what coordinate system we use!

17.3 Coordinate Invariance

The coordinate invariance we have just seen follows directly from the action
itself – since we have been careful to write the action as a scalar, it does
not change under a change in coordinates. We can take xµ → x′µ and S
retains its numerical value (we integrate over all of the coordinates, with
integration region shifted appropriately). That sounds like a transformation
that should lead to some sort of conserved quantity. Next time, we will
carry out the transformation explicitly, but the basic idea is to perform the
coordinate transformation, which induces some transformation in the fields
and their derivatives – viewed as an expansion, this gives us a perturbation
to S which then must be zero, enforcing the invariance of the action.
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