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E&M is a good place to begin talking about sources, since we already know
the answer from Maxwell’s equations. We look at how a source Jµ can be
correctly coupled to a free vector field. By introducing the simplest possible
term in the action, it is clear that the coupling is correct, but will lead
to inconsistencies since there is no field theory for Jµ – we imagine a set
of charges and currents specified in the usual way, and the action will be
incomplete until the terms associated with the free field theory for Jµ are
introduced.

In addition to giving us a model for how to couple to a field theory, we expose
a new symmetry of the action in the new source term. The gauge invariance
of Fµν (changing the four-potential Aµ by a total derivative) implies that
Jµ, whatever it may be, is conserved. This leads to an interest in more
general Jµ, not just those coming from macroscopic E&M. So we begin our
discussion of coupling fields to E&M, and for this, we need some massive
scalar field results.

22.1 Introducing Sources

We must now introduce some notion of source for the electromagnetic field –
we are looking for a connection between source charges ρ and currents, and
the electric and magnetic fields themselves. In this setting, the target is a
relation between Fµν (or Aµ) and (ρ,J). We have not yet attempted to in-
troduce sources, and indeed it is unclear in general how sources should relate
to Fµν . Fortunately, we are familiar with the structure of electrodynamics,
and can use this to guide our approach.

For the four-potential, in Lorentz gauge, we know that Maxwell’s equations
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reduce to
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which implies the usual identification:

Jµ=̇
(
ρ c
J

)
(22.3)

and the equations become

∂ν ∂νA
µ = − 1

ε0 c2
Jµ. (22.4)

These are to be introduced via the Fµν equation – we have

∂νF
µν = ∂ν (∂µAν − ∂νAµ) = −∂ν ∂νAµ︸ ︷︷ ︸

in Lorentz gauge

=
1

ε0 c2
Jµ. (22.5)

Remember that the above equation ∂νF
µν = 0, in the source-free case,

came from variation of Aµ. Our goal, then, is to introduce a term in the
Lagrangian that gives, upon variation of Aµ, the source 1

ε0 c2
Jµ. The most

obvious such term (that is still a scalar) is Aµ Jµ. Suppose we make the
natural generalization

S =
ε0 c

2

2

∫
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√
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2
Fµν Fµν

)
+β

∫
dτ
√
−g JµAµ,

(22.6)
then variation of Fµν gives, as before:

ε0 c
2

2
(Aν,µ −Aµ,ν − Fµν) = 0 (22.7)

and we recover the description of field strength in terms of the potential
fields. The variation w.r.t. Aµ is different – we get∫

dτ
√
−g

[
ε0 c

2

2
(F νµ − Fµν);µ + β Jν

]
δAµ = 0, (22.8)
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and using the antisymmetry of Fµν , this gives us the field equation

ε0 c
2 F νµ;µ = −β Jν (22.9)

which is supposed to read: F νµ;µ = µ0 J
ν −→ β = −1.

So the coupling of E&M to sources gives an action of the form

S =
ε0 c

2

2

∫
dτ
√
−g
(
Fµν (Aν,µ −Aµ,ν)− 1

2
Fµν Fµν −

2
ε0 c2

JµAµ

)
.

(22.10)

Notice that, from the field equation itself: Fµν;ν = µ0 J
µ, we have

Fµν;νµ = µ0 J
µ
;µ = 0 (22.11)

because we are contracting an antisymmetric tensor Fµν with the symmetric
∂µ∂ν . This enforces charge conservation:

Jµ;µ =
1
c

∂(c ρ)
∂t

+∇ · J = 0. (22.12)

We have defined Jµ in its usual E&M way, but that means that Jµ is itself a
field. Where are the terms corresponding to the dynamic properties of Jµ?
Presumabely, this four-current is generated by some distribution of mass
and current, specified by ρ and v. It’s all true, of course, and what we are
apparently lacking is an additional term in the action corresponding to the
free-field action for Jµ.

22.2 Kernel of Variation

Irrespective of the lack of a complete description of the system (Jµ, Fµν),
we nevertheless can make some progress just by knowing the form of the
source. That there should be some source and that it should be describable
by Jµ is already a new situation.

This new AµJ
µ term provides a new type of symmetry. We know that

generic variation of Aµ −→ Aµ + δAµ leads to the equations of motion. But
the free field action for E&M is actually less restrictive than this – consider
the explicit variation:

S[Aµ + δAµ] =
∫
dτ
√
−g
(
Fµν (Aν,µ −Aµ,ν)− 1

2
Fµν Fµν

)
+
∫
dτ
√
−g (Fµν (δAν,µ − δAµ,ν))

(22.13)
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so we have
δS =

∫
dτ
√
−g (Fµν − F νµ) δAν,µ (22.14)

and it was the integration-by-parts that gave us the statement: Fµν;ν = 0.
But we see here that there is an entire class of possibilites that are completely
missed in the above – forgetting for the moment that Fµν is anti-symmetric,
it certainly appears in anti-symmetric form here, and so if it were the case
that δAν,µ = δAµ,ν , then δS = 0 automatically and we have not constrained
the fields at all! So while it is true that the integration-by-parts argument
will work for arbitrary variation of Aµ, we have apparently missed the class:
δAν,µ = η,νµ for arbitrary scalar functions, entirely. Well, to say that they
are “missing” is a little much, rather, they don’t matter. The dynamical
fields are left unchanged by a transformation of Aµ of the form:

Aµ −→ A′
µ = Aµ + η,µ (22.15)

in which case δS = 0 anyway. This is precisely the gauge choice that under-
lies E&M. Note the similarity with the other “choice leads to conservation”
argument we have seen recently – that of coordinate invariance in an action
and energy-momentum tensor conservation. It’s a similar situation here with
the gauge choice for potentials, and in GR, we refer to coordinate choice as
a gauge choice.

What is interesting is that when we imagine a source of the form Aµ J
µ,

there enters a naked δAµ, and so it is no longer the case that we can free
ourselves of a potential restriction. In other words, for all variations δAµ
but δAµ = η,µ, we know the field equations. But in that special case, we
have a contribution that comes from

δSJ =
∫
dτ
√
−g Jµ δAµ =

∫
dτ
√
−g Jµη,µ (22.16)

and we must have this term vanish – integrating by parts gives

δSJ =
∫
dτ
(√
−g Jµη

)
,µ︸ ︷︷ ︸

=0

−
∫
dτ
√
−g Jµ;µ η (22.17)

and we see that Jµ;µ = 0 is a requirement if we are to obtain δSJ = 0. Then
gauge freedom has actually imposed continuity on the sources, apart from
our original E&M concerns. This tells us, in particular, that if we were
looking for more exotic sources, they would all need a notion of continuity,
or would violate the most minimal coupling.
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Evidently, this particular parametrization of the variation is, in a sense,
in the null space of the variation of the action, once we have specified the
subtractive (antisymmetric) term, we automatically miss any variation of
this form – with the additional structure of the current-vector coupling, we
have revealed the deficiency. Now let’s go back a few steps and see how this
works in our earlier theories.

22.3 Scalar Fields

Recall the free-field Lagrangian for a (massless) scalar field

S =
∫
dτ
√
−g
(
φ,µ π

µ − 1
2
πµ π

µ

)
. (22.18)

When we vary w.r.t. πµ, we find φ,µ = πµ, which is reasonable. But think
about the φ,µ variation. As with E&M, only the derivatives of φ show up,
so we expect trouble. Indeed, for generic δφ:

δS =
∫
dτ
√
−g πµ δφ,µ (22.19)

and once again, we see that for variation of the form δφ =const. the action
automatically vanishes, for all the rest, we obtain πµ;µ = 0. This is the usual
sort of idea for scalars, that fundamentally, a constant can be added to the
definition without changing the equations of motion.

What if we introduce a potential for φ – there are a few terms we might con-
sider, ∼ φ, ∼ φ2, etc. The simplest would be αφ, but this gives a relatively
uninteresting Poisson equation with constant source. A term quadratic in φ
changes the differential equation. For the general case,

Sm =
∫
dτ
√
−g
(
πα φ,α −

1
2
πα πβ gαβ − V (φ)

)
(22.20)

we have, upon variation of πα, the usual πβ gαβ = φ,α, and under δφ:

δSm =
∫
dτ
√
−g
(
−πα;α −

∂V

∂φ

)
δφ = 0 (22.21)

which, in flat Minkowksi spacetime becomes:

22φ+
∂V

∂φ
= 0. (22.22)
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For a quadratic “mass” term, V (φ) = −1
2 m

2 φ2, we get the Klein-Gordon
equation

22φ−m2 φ = 0. (22.23)
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