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We will discuss the use of multiple fields to expand our notion of symme-
tries and conservation. Using a natural “current” that comes from complex
massive scalar field theory, we have a candidate source for coupling to E&M.
We go through the usual procedure of minimal coupling, followed by a pro-
cess of consistency that we will use to introduce the idea of local gauge
invariance. The approach can be thought of in terms of augmenting a La-
grangian until a consistent theory is obtained, and displays the pattern of
guess-check-reguess-recheck that in this case ends after one iteration.

23.1 Two Scalar Fields

Two noninteracting, massive scalar fields can be developed from our current
considerations – the simplest representation would be

L̄ =
(

1
2
ψ,µ ψ

µ
, −

1
2
m2 ψ2

)
+
(

1
2
η,µ η

µ
, −

1
2
m2 η2

)
, (23.1)

where we’ve given both fields the same mass. As a sum of two independent
Lagrangians, it is easy to see that the variation of ψ and η do not talk to
each other, so we will get a pair of massive Klein-Gordon fields.

Given that there are two fields, we “immediately” think of the real and
imaginary parts of a complex number, and define the independent fields φ
and φ∗ by taking φ ≡ ψ + i η, φ∗ = ψ − i η. Then in these variables,

L̄ = φ∗,µ g
µν φ,ν −m2 φ∗ φ (23.2)

and to obtain the field equations, we need to vary w.r.t φ and φ∗ inde-
pendently (it’s a two-field theory, after all). The two field equations are
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symmetric
0 = −22φ−m2 φ

0 = −22φ∗ −m2 φ∗.
(23.3)

It is pretty clear from the action that our variation, w.r.t δφ and δφ∗, which
constrains the fields themselves, says nothing at all about invariance of the
Lagrangian under variations that mix the fields. For example, if we take
φ → ei α φ, then φ∗ → e−i α φ∗ doesn’t change the Lagrangian at all, yet
corresponds to a coupling in the variation between the two fields φ and φ∗

(this is easy to see in the real formulation (23.1) above). That is, we are
linking the two fields together through the phase factor α, a constant. We
know that any value for α leaves the action unchanged, and so it is reasonable
to ask what this implies about conservation (a Noetherian question).

But given that we cannot directly vary w.r.t α, we need a new way to think
about this type of symmetry. Suppose we take the infinitesimal form of
eiα ≈ (1 + i α) – then we are looking at the transformation

φ −→ φ (1 + i α)
φ∗ −→ φ∗ (1− i α),

(23.4)

so we can write the perturbed Lagrangian:

L̄(φ+ ε1 φ, φ
∗ + ε2 φ

∗,(φ+ ε1 φ),µ ,(φ
∗ + ε2 φ

∗),µ) (23.5)

with ε1 ≡ i α, ε2 ≡ −i α and the Taylor expansion gives

0 = δL̄ ≈ L̄+
∂L̄
∂φ

ε1 φ+
∂L̄
∂φ∗

ε2 φ
∗ +

∂L̄
∂φ,µ

ε1 φ,µ +
∂L̄
∂φ∗,µ

ε2 φ
∗
,µ. (23.6)

We are using the fact that for ε1 and ε2 defined according to ei α, we know
that the Lagrangian is invariant, so δL̄ = 0 automatically. From the field
equations

0 = ∂µ

(
∂L̄
∂φ,µ

)
− ∂L̄
∂φ

0 = ∂µ

(
∂L̄
∂φ∗,µ

)
− ∂L̄
∂φ∗

,

(23.7)

we can replace the first two terms in δL̄:

0 = ∂µ

(
∂L̄
∂φ,µ

)
ε1 φ+ ∂µ

(
∂L̄
∂φ∗,µ

)
ε2φ
∗ +

∂L̄
∂φ,µ

ε1 φ,µ +
∂L̄
∂φ∗,µ

ε2 φ
∗
,µ

= ∂µ

(
∂L̄
∂φ,µ

ε1 φ+
∂L̄
∂φ∗,µ

ε2 φ
∗
)

︸ ︷︷ ︸
≡jµ

.
(23.8)
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Explicitly, this global (constant α) phase transformation leads to the con-
served “current” (so named because ∂µj

µ = 0 just as with the physical
current in E&M):

jµ = i α ((∂µφ∗)φ− (∂µφ)φ∗) . (23.9)

Again, because of the association with E&M four-currents, the zero compo-
nent is sometimes called the conserved “charge”, and the spatial components
the “current”. Integrating the conservation statement ∂µjµ = 0 gives the
usual:

1
c

d

dt

∫
j0 dτ = −

∮
j · da, (23.10)

using the Minkowski metric (then dτ = dxdydz is the spatial three-volume).

23.2 Why We Care

Okay, so that’s all very nice, but what does it do for us? Thinking about
E&M, we learned last time that any four-vector jµ that is supposed to
provide a source for the electric and magnetic fields must be conserved,
∂µj

µ = 0. That’s always true for the physical currents that we use in E&M,
swarms of charges, for example. But it makes more sense, in a way, to try to
couple the vector field theory for Aµ to other field theories. In other words,
we take two free field theories, E&M and a complex scalar field, and combine
them. In order to do this, we need to have in mind a conserved four-current,
and we now know that complex scalar fields have one built-in.

Consider the full action (dispensing with the units for now)

S =
∫
dτ
√
−g
((

Fµν (Aν,µ −Aµ,ν)− 1
2
F 2

)
+
(
φ∗,µ g

µν φ,ν −m2 φφ∗
)

+ α j̃µAµ

)
,

(23.11)
where α is the coupling strength, and j̃µ ≡ i((∂µφ∗)φ − (∂µφ)φ∗). This is
straightforward, but there is a potential problem – we know that ∂µjµ = 0
for the free fields φ and φ∗, but by introducing the coupling, it is not clear
that it remains conserved. This is a persistent issue in classical field theory
– we make the simplest possible theory, but we have not yet established that
this simple theory is consistent with itself. We see that variation w.r.t. Aµ
will couple the scalar fields to E&M, but now there will be Aµ terms in the φ
and φ∗ field equations because j̃µ sits next to the four-potential. So we need
to check that the whole theory is consistent. That involves finding the field
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equations and showing, explicitly, that in this expanded setting, ∂µj̃µ = 0
(it does not).

The field equations that come from varying Aµ, Fµν , φ and φ∗ are:

Fµν = Aν,µ −Aµ,ν
Fµν,ν = α j̃µ

−∂µ∂µ φ−m2 φ− α i ∂µ (φAµ)− α i ∂µ φAµ = 0 and c.c.

(23.12)

Again, by symmetry, we see the need for the conservation of j̃µ – but

∂µj̃
µ = i (φ∂µ∂µ φ∗ + ∂µ φ∗ ∂µ φ− φ∗ ∂µ∂µ φ− ∂µ φ∂µ φ∗)

= i (φ∂µ∂µ φ∗ − φ∗ ∂µ∂µ φ)
(23.13)

which, using the field equations, becomes

∂µj̃
µ = 2α∂µ (φφ∗Aµ) 6= 0. (23.14)

Aha! Our theory is inconsistent – and now we have the task of fixing it. It
is pretty clear how to do this – we basically want to introduce a term that
will kill off the above, a term in the Lagrangian whose variation looks like
2αφφ∗Aµ. Instead, we will impose local gauge invariance.

23.3 Local Gauge Invariance

We know that the electromagnetic field is unchanged under Aµ → Aµ +ψ,µ,
and that there is an internal phase invariance for the free-scalar fields φ→
ei α φ. How can we combine these two ideas? It is not even particularly clear
that we should combine them. Why should the coupled system exhibit the
same symmetries as the individual ones? As it turns out, this is a funda-
mental (and new, from our point of view) guiding principle for generating
“good” field theories – that somehow, merging two field theories should have
as much (or more) gauge structure than the free theories did.

We have basically one option available to us if we want to combine the gauge
transformations for Aµ and φ – because ψ is an arbitrary function of x, we
cannot obtain a relation between ψ and α that holds everywhere. Solution:
Make α a function of position, and indeed, let’s set it equal to ψ. Now the
gauge function ψ(x) is itself a field, and it is clear from the derivatives in
the complex scalar Lagrangian that φ→ φ′ = φ ei ψ(x) is not a symmetry of
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the free field theory. The mass term is fine m2 φφ∗ → m2 φ′ φ′∗ = m2 φφ∗,
but

∂µ

(
ei ψ φ

)
= ei ψ (φ,µ + i ψ,µ φ) (23.15)

shows us that the derivative term will not lose all ψ dependence. Here is
the unusual question we now ask (and a similar issue comes up in GR, in a
very similar setting) – is it possible to redefine ∂µ such that Dµ

(
ei ψ φ

)
=

ei ψDµ φ? Then forming the action out of this modified derivative will au-
tomatically enforce local gauge invariance.

If we define the primed fields φ′ ≡ ei ψ φ and A′µ ≡ Aµ + β ψ,µ then solving
for ψ,µ in terms of Aµ and A′µ, we can rewrite (23.15)

∂µ φ
′ = ei ψ

(
∂µ φ+ i φ

1
β

(
A′µ −Aµ

))
↓

∂µ φ
′ − i

β
φ′A′µ = eiψ

(
∂µ φ−

i

β
φAµ

)
,

(23.16)

which immediately suggests that Dµ ≡ ∂µ− i
β Aµ is the most likely candidate

– this operator is called the “covariant derivative” and will be generalized
in the general relativistic setting. If we write the Lagrangian:

L̄ = Fµν (Aν,µ −Aµ,ν)− 1
2
F 2 +Dµ φ g

µν (Dνφ)∗ −m2 φφ∗ (23.17)

then we will get a consistent field theory, with some obvious replacements,
but most importantly ∂µjµ = 0. The constant β used in our Dµ is set to α−1

for the above. Our new derivative here is more notation than anything else,
and provides a compact form for the Lagrangian. But let’s be clear, when
you get down to the physics of the theory, like the continuity equation, it is
our familiar ∂µ that is useful – that’s the one which allows us to integrate.

23.3.1 Field Equations of the Sourced System

If we write out all the terms in (23.17) in preparation for variation, we have

L̄ = Fµν (Aν,µ −Aµ,ν)− 1
2
F 2 −m2 φφ∗

+
[
φ,µ g

µν φ∗,ν +
i

β
φ,µ g

µν Aν φ
∗ − i

β
Aµ φ g

µν φ∗,ν +
1
β2

Aµ φA
µ φ∗

]
.

(23.18)
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Nothing has changed for the Fµν variation, and we recover the usual Fµν =
Aν,µ − Aµ,ν . The potential variation is more complicated (setting β = 1/α
to get the correct limiting case):

δL̄(δAµ) = δAµ,ν (F νµ − Fµν)

− i α (φ∂µ φ∗ − φ∗ ∂µ φ) δAµ + 2α2Aµφφ∗ δAµ,
(23.19)

and flipping the derivative on the first sign, to turn δAµ,ν → δAµ, we get
the field equation

−2Fµν,ν = i α (φ∂µ φ∗ − φ∗ ∂µ φ)− 2α2 φφ∗Aµ (23.20)

and clearly, we now have the natural current definition:

jµ ≡ i (φ∂µ φ∗ − φ∗ ∂µ φ)− 2αφφ∗Aµ

= i (φ (Dµ φ)∗ − φ∗Dµ (φ)) .
(23.21)

For the φ and φ∗ variation, we have

δL̄(δφ∗) =
(
−m2 φ− ∂µ∂µ φ+ i α φ,µA

µ + (i αAµ φ,µ + i αAµ,µ φ) + α2AµAν
)
δφ∗ = 0

= −m2 φ−DµDµ φ = 0.
(23.22)

And we get the same thing for φ∗ via φ variation (namely (DµD
µ φ)∗ +

m2 φ∗ = 0). It is interesting that the effect of the move ∂ → D is just
replacement, we can treat it just like ∂µ in the variation.

Finally, we want ∂µjµ = 0:

∂µj
µ = i (∂µ φ∂µ φ∗ + φ∂µ∂

µ φ∗ − ∂µ φ∗ ∂µ φ− φ∗ ∂µ∂µ φ)
− 2αφ,µ φ∗Aµ − 2αφφ∗,µA

µ − 2αφφ∗Aµ,µ
= i (φ (DµDµ φ)∗ − φ∗ (DµDµ φ))
= 0

(23.23)

where the final equality holds by virtue of the field equations.
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