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We have done the warm-up: E&M. The first rank tensor field theory we
developed last time gives us the guiding principles for generating higher-
rank theories. Second rank tensors present a proliferation of possibilities,
and reducing to some natural free field description takes some time. It
is well worth it, despite the trouble – we will, in the end arrive at what
amounts to linearized general relativity, a subject we shall return to later
on (gravitational radiation is best described in terms of this model).

It is a long-ish road, the first-order form which was easy to get in E&M
is not so obvious here, and this is again because of the free-wheeling index
freedom provided by higher rank. In a sense, this is the last classical case
we need to consider, and the fact that in the end, we get GR uniquely is a
pleasant surprise.

We start with the general form of the action for a free, symmetric, massless
second rank tensor field and whittle it down to a minimal description. Then,
after a variety of variable changes, we finally arrive at a somewhat disguised
first-order form and verify that the field equations are correct.

25.1 General, Symmetric Free Fields

We want to construct a field theory appropriate to a second rank tensor
field h̃µν in four dimensions. For our Lagrangian, we can take any invariant,
quadratic combinations of h̃µν , h̃µν,γ , gµν = ηµν (we are explicitly working
with a Minkowski background) and εµναβ . As an additional twist, we will
eventually specialize to symmetric tensor fields here, but a priori, we will
assume nothing about the symmetries of h̃µν .

As with the scalar and vector cases, the quadratic-in-the-field terms, like
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for example: h̃µν h̃µν will correspond to adding “mass” to the field, and we
are interested in the massless free field form (motivated by E&M and its
massless Aµ). So we are left tabulating the quadratic derivative terms that
could enter in the most general Lagrangian – to make life easier, define
h̃µνα ≡ h̃µν,α, then we have:

I =
{
I1 = h̃µνα h̃

µνα I2 = h̃µνα h
αµν I3 = h̃µνα h̃

ναµ

I4 = h̃µνα h̃
νµα I5 = h̃µνα h̃

ανµ I6 = h̃µνα h̃
µαν

J =
{
J1 = h̃ µ

µν h̃
νγ
γ J2 = h̃ ν

µν h̃µγ γ
J3 = h̃ µ

µν h̃
γν
γ J4 = h̃ ν

µν h̃γµγ

K =
{
K1 = h̃ µ

µν h̃
γ ν
γ K2 = h̃ ν

µν h̃
γ µ
γ K3 = h̃µ µν h̃

γ ν
γ .

(25.1)

I have grouped the above just to keep track of the various terms, the set I
are three-three contractions (three indices from one h̃ contracted with three
indices from another), J and K both contain combinations with one open
index on each h̃ contracted with one open index from another – there are
two different ways to close a pair, J and K represent combinations with
both options.

The Lagrangian is a general combination of the above, so we begin with

L =
6∑
`=1

α` I` +
4∑
`=1

β` J` +
3∑
`=1

γ`K`. (25.2)

For variation, it is best to write out the L in a total factored form – that
way what we mean by ∂L

∂h̃µν,α
versus ∂L

h̃γγµ
will be clear – this is not strictly

speaking necessary, but allows us to easily (if tediously) vary unambiguously

L = h̃µν,α h̃ρσ,γ

[
α1 g

µρ gνσ gαγ + α2 g
µσ gνγ gαρ + α3 g

µγ gνρ gασ

+ α4 g
µσ gνρ gαγ + α5 g

µγ gνσ gαρ + α6 g
µρ gνγ gασ

+ β1 g
µα gνρ gσγ + β2 g

µρ gνα gσγ + β3 g
µα gνσ gργ + β4 g

να gµσ gργ

+ γ1 g
µα gνγ gρσ + γ2 g

να gµγ gρσ + γ3 g
µν gαγ gρσ

]
.

(25.3)

We vary according to the usual Euler-Lagrange prescription for fields, since
there is no h̃µν dependence, the relevant portion for the field equations is
just

δL
δh̃βδ,η

= 0 = G h̃ρσ,γ

(
δβµ δ

δ
ν δ

η
α

)
+G h̃µν,α

(
δβρ δ

δ
σ δ

η
γ

)
(25.4)
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with G defined to be the cubic metric terms in (25.3). This gives us a
number of combinations, but notice that not all of the terms in the original
Lagrangian are independent under variation, there are only seven combina-
tions of coefficients that appear, compared with our initial set of thirteen
coefficients. The field equations are

0 = 2α1 h̃
βδη
, η +(α2 + α3 + β1 + β4)

(
h̃ηβδ, η + h̃δηβ, η

)
+ 2α4 h̃

δβη
, η

+ 2 (α5 + β3) h̃ηδβ, η + 2 (α6 + β2) h̃βηδ, η + (γ1 + γ2) (h̃η δβη, + gβδ h̃αη,αη)

+ 2 γ3 g
βδ h̃η γη, γ .

(25.5)
Looking at the above, we can make our first simplification – let us require
that the field equations be symmetric in β ↔ δ, this amounts to looking at
symmetric h̃µν .

The γ terms (coming from the invariants K) are already symmetric in (β,
δ) interchange by virtue of the metric, and we see that to symmetrize the I
and J sectors (constants α and β), we need:

α1 = α2 (α2 + α3 + β1 + β4) = 2 (α5 + β3) = 2 (α6 + β2). (25.6)

Then the field equations become:

0 = 2α1 (h̃βδη, η + h̃δβη, η) + 2 (α5 + β3) (h̃ηβδ, η + h̃δηβ, η + h̃ηδβ, η + h̃βηδ, η)

+ (γ1 + γ2) (h̃η δβη, + gβδ h̃αη,αη) + 2 γ3 g
βδ h̃η γη, γ .

(25.7)
The utility is clear – second derivatives commute, and we are left with
symmetric combinations of h̃µν . Define the symmetric form hµν ≡ h̃µν+h̃νµ,
then we can write (noting that hγγ = 2 h̃γγ)

0 = 2α1 h
βδη
, η+2 (α5+β3) (hβηδ, η+h

δηβ
, η)+2 (γ1+γ2) (hη δβη, +gβδ hαη,αη)+2 γ3 g

βδ hη γη, γ .
(25.8)

So now we have a free, massless second rank field equation, and we want
to “project out” the portion that is composed of pure first-rank tensor de-
generate combinations. This is the same procedure as for our vector E&M
case, where we wanted to make sure there was no φ,µ information in our
field equations – here, the natural object is Aµ,ν +Aν,µ, a symmetric second
rank tensor built out of vectors. We will take hµν = Aµ,ν +Aν,µ and remove
any reference to Aµ,ν in the field equations. Putting this into (25.8), we end
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up with the following constraints

0 = Aβδη, η (2α1 + 2 (α5 + β3))

0 = Aηβδ, η (4 (α5 + β3) + 4 (γ1 + γ2))

0 = gβδ Aαη,αη (4 (γ1 + γ2) + 4 γ3) ,

(25.9)

from which we learn that

γ1 + γ2 = −γ3 (α5 + β3) = γ3 α1 = −γ3 (25.10)

and when the dust has settled, the field equations depend on an overall
factor of γ3 and nothing else:

0 = γ3

(
−hβδη, η + (hβηδ, η + hδηβ, η)− (hη δβη, + gβδ hαη,αη) + gβδ hη γη, γ

)
.

(25.11)
This is the final form for a generic free massless second rank field. The con-
straints do not completely fix the action, there is still freedom in the choice
of some coefficients (that do not appear in the field equations, effectively).
We will fix these in a moment, but there is one last simplification we can
introduce here.

25.1.1 Trace-Reversed Form

When terms like hη δβη, arise, it is sometimes useful to consider the trace-
reversed form of the tensor field. This is just a notational shift, but one
which can simplify both the field equations and the Lagrangian.

Let hµν = −Hµν+ 1
2 gµν H

α
α, which can be inverted (take the trace) to define

Hµν :

Hµν = −hµν +
1
2
gµν h

α
α, (25.12)

using gαα = D, the dimension, which is four in this case.

Then the field equations become:

Hβδη
, η −Hβηδ

, η −Hδηβ
, η + gβδHαη

,αη = 0. (25.13)

We can simplify the above – the scalar Hαη
,αη can be solved in favor of the

D’Alembertian of the trace. This is a common trick for re-organizing field
equations. We have ten equations (β and δ are independent, but the field
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equations themselves are symmetric). If we take the β−δ trace of the above,
we find

Hαη
,αη = −1

2
Hσ η

σ, η (25.14)

so we can write

Hβδη
, η −Hβηδ

, η −Hδηβ
, η −

1
2
gβδH α

,α = 0 (25.15)

with H ≡ Hα
α. This will be our target from the Lagrangian.

25.1.2 First-Order Form

The general Lagrangian (25.3) written using the constraints (25.6) and (25.9)
with the rest of the coefficient freedom fixed so as to give a symmetric spray
of cubic metric (G from (25.4)) gives the simple form, in terms of Hµν :

L̄ = 2 γ3

(
Hγ

γ,αH
σ α
σ, +Hµν,α

(
Hµαν

, +Hναµ
, −Hµνα

,

))
. (25.16)

From here, we can again write products of Hµν,α and symmetrize the metric
products – this is just a matter of taste, and makes the canonical momenta
a little easier to express. Explicitly

L̄ = 2 γ3Hµν,αHρσ,γ

[
1
2
gµν gρσ gγα +

1
2
gρµ gσα gγν +

1
2
gσν gρα gγν +

1
2
gρν gσα gγµ

+
1
2
gσν gρα gγµ − 1

2
gρµ gσν gγα − 1

2
gσµ gρν gγα

]
.

(25.17)

The procedure, as always, is to take πβδη = ∂L̄
∂Hβδ,η

, then the Legendre
transform can be used to give us H̄ which will allow us to properly define
the first-order form (where πµνα and Hµν are the independent variables).
Using the definition, we find (written in covariant form for ease)

πµνα = 4 γ3

[
1
2
Hγ

γ,αHµν +Hµα,ν +Hνα,µ −Hµν,α

]
. (25.18)

Our use of a symmetrized product of metrics allows us to see immediately
that

πµναHµν,α = 2L̄ (25.19)

numerically (which is to say, if we use (25.18)). So our Legendre transform,
obtained by calculating

H̄ = πµναH
µνα
, − L̄ (25.20)
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is itself equal to L̄. Of course, H̄ is a function only of πµνα, so there is a
moral difference.

First order form will be achieved by taking the resulting H̄ and Legendre
transforming back to L̄, from which the variation, independently, of Hµν,α

and πµνα will proceed. If we first invert the relation (25.18) to find Hµν,α

as a function of πµνα (define γ ≡ 4 γ3 for the following):

Hµν,α =
1

2 γ

(
πµαν + πναµ −

1
3
(
gµα π

γ
νγ + gαν π

γ
µγ

))
(25.21)

then we can write H̄ = L̄|Hµν,α(πµνα) as

H̄ =
1

2 γ

[
1
2
πµνα (πµαν + πναµ)− 1

3
πσασ π

γα
γ

]
. (25.22)

So, finally, we have the Lagrange density in true first-order form: take
πµναHµν,α − H̄ at face value, this is precisely L̄:

L̄ = πµναHµν,α −
1

2 γ

(
1
2
πµνα (πµαν + πναµ)− 1

3
πσασ π

γα
γ

)
. (25.23)

25.1.3 Checking the Field Equations

The advantage of (25.23) is that the variation w.r.t. Hµνα
, is trivial – it

returns, just as for E&M, the divergence-less character of πµνα, the canonical
momentum (we had Fµν,ν = 0 for electrodynamics):

δL̄
δHµν,α

= πµνα,α = 0. (25.24)

Then all we need is for the variation w.r.t. πµνα to give the correct definition
of πµνα in terms of Hµν,α. From (25.18), we know that πµνα = πνµα, the
momentum inherits the symmetry of Hµν . We have to be a little careful in
our variation, then. Forgetting about the symmetry for a moment, we have

δL̄ = Hµν,α δπ
µνα − 1

2 γ

[
1
2

(πµαν + πναµ + πµαν + παµν) δπµνα − 2
3
πσασ δπ

γα
γ

]
=
[
Hµν,α −

1
2 γ

(
πµαν +

1
2

(πναµ + παµν)− 2
3
πγνγ gµα

)]
δπµνα,

(25.25)
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and the symmetry comes in observing that it is the symmetric portion (in
µ ↔ ν) of the above term in brackets that must vanish – we can say noth-
ing about the antisymmetric part, which is killed automatically. Using the
symmetry of the field Hµν itself, we have, finally:

Hµν,α −
1

2 γ

(
πµαν + πναµ −

1
3
(
gµα π

γ
νγ + gνα π

γ
µγ

))
= 0, (25.26)

and comparing with (25.21), we see that this field equation enforces the re-
lation between Hµν,α and πµνα. This is no surprise, it is the whole point
of the Hamiltonian (first order form) approach. If we uninvert, to get
πµνα (Hµν,α) (just (25.18)) then take the divergence πµνα,α = 0 as dictated by
the other field equation, we will get the original trace-reversed field equation
for Hµν (25.15). Again, because ∂L̄

∂Hµν,α
≡ πµνα defines the momenta, the

field equation for Hµν must follow from the divergence since the original field

equations for L̄ in terms of Hµν,α (25.16) are precisely ∂α
(

∂L̄
∂Hµν,α

)
= 0 owing

to the lack of Hµν (with no derivative) in the starting Lagrangian (25.2).

25.1.4 A Change of Momenta

Finally, we will rewrite the canonical momentum πµνα in terms of a slightly
modified triply-indexed object. This change is equivalent to the move from
hµν to the trace-reversed Hµν . Indeed, what we are effectively doing is
using Hµν as the field, but the momentum appropriate to the original hµν .
That’s a technical point, and I don’t want to belabor it – the utility will
become clear when we connect all of this to the natural geometric objects
that we sort of (and only “sort of” at this stage) expect to see in the full
Lagrangian of general relativity. From our current point of view, I am just
going to dispense with πµνα in favor of a new object which can be varied
independently. Define Γαµν by

πµνα = γ
[
−2 Γαµν + gµα Γγνγ + gνα Γγµγ

]
, (25.27)

then inputting this definition in (25.23) gives

L̄ = 2 γ
([
−Γα,µν + gµα Γγνγ

]
Hµν α

, +
[
Γασσ Γγαγ − Γµνα Γαµν

])
. (25.28)

For what follows in the next few sections, we will take Hµν to be the fun-
damental field, which leads to a modified momentum naturally described in
terms of Γαµν – using this, and the fact that for L̄ going into the action, we
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can flip derivatives while picking up minus signs (integration by parts), we
have the final (final) form:

L̄ = Hµν
(
Γαµν,α − Γαµα,ν

)
+ gµν

(
Γαµν Γγαγ − Γαβµ Γβαν

)
. (25.29)

The naming here, Γαµν is no accident – it was presaged by (25.18) which has
a familiar combination of derivatives of Hµν,α in it. In the final form, we will
see that gµν +hµν can be interpreted as the metric and Γαµν is a connection
– in fact, from the field equations (as is already evident in (25.21)), it is the
unique connection associated with a metric space, and this will give us the
usual geometric interpretation of general relativity.
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