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We have seen, in disguised form, the equations of linearized gravity. Now
we will pick a gauge for our linearized field equations. As with E&M, this
gives us a way to discuss the physically relevant portion of the solutions as
opposed to leaving an infinite family. For the spherically symmetric solution
we find from the vacuum field equations, we will gain, through linearization,
an interpretation for the functions scaling dt and dr.

In addition, we will learn that there are two separate sources for pertur-
bations to Minkowski — the usual Newtonian scalar potential, and a new
vector potential associated with moving mass (or more generally, moving
energy density). By considering the (linearized) geodesic equations, we can

associate these naturally with the scalar and magnetic vector potential from
E&M.

28.1 Return to Linearized Field Equations

The linearized field equations can be obtained by writing G, in terms of
a metric perturbation g,, = 7. + hy,. Alternatively, we can simply take
the field equations we got when we considered the most general action for a
second rank, symmetric field theory. This latter point of view enforces the
idea that the linear field equations are really meant to be interpreted as field
equations on an explicitly Minkowski background. In trace-reversed form,
they read:

- _ 1 _ 1 _
Gy = 0" Oy = 5 0p0” iy = 5 My 9°90° hag, (28.1)

with Ew, = hy — %nw h, and hy,, the metric perturbation: g,, = 1., +
huw. We are going to use our gauge invariance, h,, — h;w = huw + fuw)
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(analagous to A, — A, + f, in E&M) to get rid of the divergence terms
above, that is, we want 9°h;,, = 0,

- 1 1
aphlyp =0 (hup - 5 Tlvp h+ a(l/fp) - 5 MNvp o fa)
- 1 1 1
= 0" hup+ 5 0°0, fp+ 5 0°0p fy — 5 0,0 fa (28.2)
- 1
= 0" hyp + 3 070, fu.
To get this equal to zero, we need to solve Poisson’s equation for f,: 00, f, =

—20” hy,. Suppose we do that (Lorentz gauge in E&M), then the (really
final) linearized Einstein tensor reads:

_ 1 _
Gl = =5 00" i, (28.3)

where the primes remind us that we have chosen a gauge and transformed
already. This is an interesting equation — it says among other things that
in source free regions, the metric perturbation B:W can form waves (from
now on, I drop the primes indicating the transformation, but remember the
gauge condition). We will return to that later on, for now I want to focus on
a matter source of some variety, so we have to think about the right-hand
side of Einstein’s equation in a weak limit.

What should we choose as the form for the matter generating the metric
perturbation? Let’s consider rigid-body sources — here we mean that the
internal stresses, the T;; components of the stress tensor, are zero. That’s
not strictly speaking possible — even for non-interacting dust at rest, we can
boost to a frame in which there are diagonal components aside from g,
but we are taking these to be small (they have (v/c)? factors associated with
them). We have a mass density and a rigid velocity, so generically, the stress
tensor takes the form:

1 2 3

—J1 —Jj2 —J
0 0 0
. 28.4
—j2 0 0 0 (28.4)
—j73 0 0 0
(remember that it is T"” that we are used to, the negatives come from
lowering using Minkowski) and Einstein’s equation in matrix form looks
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like:
hoo hor hoz  hos P —h —j2 —J3
hor hi1 hi2 his -1 0 0 0
0%a | 7+ 7 7 7 =16 :
hoa  hiz  hoa  has "l -2 0 0 o0
hoz hiz has hs3 -jz3 0 0 0
(28.5)

(I have dropped an overall € on the left, and we assume, on the right as well
— the sources must be small) all the spatial-spatial terms on the right vanish
by assumption, so the spatial-spatial components of h must satisfy

%O hij =0 — V2 hy; = 0, (28.6)

the time derivatives of the above are small if the motion of the source is small
(compared to the speed of light!) and I have discarded them. But consider
the boundary conditions, as r — 0o, we want the metric perturbation to
vanish so that we are left with normal Minkowski space-time very far away
from the source. A Laplacian can have no minima or maxima on the interior,
so we conclude that the spatial components ﬁij are identically zero.

Moving on to the less trivial components. The time-time and time-spatial
equations read:

. h
V2hoo = —167p — V2 ¢ = 47 p with ¢ = —2
2 (28.8)

hoi '

V2 ho = 167j; — VA = —47j with A; = 1

(keeping in mind that hy, = hyu, — %nw, h). This is “just” the definition
of the electromagnetic four-potential (in Lorentz gauge) in terms of sources
p and j. Here they are mass distribution and “mass current” distribution
(this says that in GR, a moving mass generates a current just like a moving
charge does in E&M).

We must connect these to motion — what we want is effectively the force
equation F = ma — but practically, what we will do is generate it from the
geodesic equation of motion for a test particle. So, referring to our classical

"With units, we have dz® = v dt = ”—(f dz® = €' dz® and then
oh  Oh

€= ~ —.
oxt  OxV

(28.7)
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intuition and our geodesic discussions, we know that the Lagrangian for a

test particle in GR is:

1
L =3 gu " (28.9)

varying this, we get equations of motion that look like:
B+ 1%, a7 37 =0 (28.10)

and what we’ll do is move the I' over to the right and interpret it as a force.
Remember that our dots here refer to the proper time 7 of the particle, but
if we assume the particle is moving slowly, the proper time and coordinate
time t coincide (to within our € error), so we will just view & as %:17 etc.
These velocities are themselves small (remember that a time derivative is
ex “spatial derivatives”) so we will also drop terms quadratic in the spatial
velocity. That leaves us relatively few terms to consider — we set @ = ¢ in

order to look at the spatial components.
Ty @88 = St h h 0 37 28.11
By T =50 gy + hypp = higy ) 727, (28.11)

but because of the diagonal form of the Minkowski metric n* = 1" (it’s
actually just 5;-, but let me leave it in this form for now). Once again,
because temporal derivatives go as epsilon times spatial ones (now applied
to the slow motion of the particle), we will drop terms quadratic in the
velocities from the above, and set time-derivatives of the metric to zero.
With these approximations, the sum looks like:

.0 20, 4j ko ij

5. 1 1. 1 .40 4
Iy, i &7 = PR (_hOO,j)+§ & &% (hoj — hOk,j)+§ i* 290" (hojr — hkoy) »

(28.12)
with 4% = 1 in these units, we put this into the equation of motion to get:

i :—<—28 hoo—i—l‘knj(akhoj—ajhok))
(28.13)

1
:§Vh00+v><(v><h0)

where I’'m writing in the usual Cartesian vector notation. Finally, we have
from (28.8) the connection to what we think of as potentials, the equation
of motion for a test particle in linearized gravity can be written,

% =Vo—4vx(VxA) (28.14)
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with the potentials determined by the source according to (28.8).

There’s no real way for me to ensure that balloons fall from the ceiling at
the moment you see the above equation, which is too bad. We’ve taken a
full tensor theory, linearized and massaged it into a vector theory which is
precisely E&M with the wrong signs (the potential for Newtonian gravity is
opposite E&M) and a counting factor of four. Indeed, it answers a question
that everyone has in E&M — when you look at how close the mass potential
is to the electromagnetic one, you imagine that it is possible to write an
electro-magneto-static-like theory — but then shouldn’t there be an analogue
of B for moving masses? Classically, this is not the case, but we see here
that GR predicts a gravitational interaction with mass “currents”.

50f5



