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After the indexing tour-de-force from last time, we are still stuck solving the
problem of orbital motion. The point of that introduction to the covariant
formulation of the equations of motion will become clear as we proceed.
Today we take a step back, dangling indices do not help to solve the problem
in this case. Although it is worth noting that we have taken coordinate
independence to a new high (low?) with our metric notation – now you
really don’t know what coordinate system you are in.

So we will solve the equations of motion in a chosen set of coordinates – the
standard ones. There is a point to the whole procedure – GR is a coordinate
independent theory, we will primarily write statements that look a lot like
what we saw last time, but, in order to “solve” a problem, we will always
have to introduce coordinates. That is the plan for today. After we have
dispensed with Keplerian orbits, we will move on and solve the exact same
problem using the Hamiltonian formulation, and for that we will need to
discuss vectors and tensors again.

3.1 Ellipse

Going back to the Lagrangian for this problem, in abstract language, we
had:

L =
1
2
mẋµ gµν ẋ

ν − U(r). (3.1)

Suppose we start off in spherical coordinates, so that we know the metric is

gµν=̇

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 (3.2)
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with coordinate differential dxα=̇(dr, dθ, dφ).

We will transform one more time: let ρ = r−1, then the metric (specified
equivalently by the line element) becomes:

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2

=
1
ρ4
dρ+

1
ρ2
dθ2 +

1
ρ2

sin2 θ dφ2.
(3.3)

In matrix form, this reads:

gµν=̇


1
ρ4

0 0
0 1

ρ2
0

0 0 1
ρ2

sin2 θ

 (3.4)

with the new coordinate differential dxα=̇(dρ, dθ, dφ).

The potential is spherically symmetric, meaning that there are no preferred
directions, functionally, that it depends only on r. We can set θ = π

2 and
θ̇ = 0 to put the motion in a specific plane (the horizontal plane – for
Cartesian coordinates in their standard configuration, this is the x−y plane).
Now that’s all well and good, but we have to be careful – when we use
information about a solution prior to variation, we can lose the full dynamics
of the system. As an example, consider a free particle classical Lagrangian –
just Lf = 1

2 mẋ2 – we know that the solutions to this are vectors of the form
x(t) = x0 +v t. If we put this into the Lagrangian, we get Lf = 1

2 mv2, just
a number. We cannot vary a number and recover the equations of motion,
so we have lost all dynamical information by introducing, in this case, the
solution from the equations of motion themselves. That may seem obvious,
but we have done precisely this in the above specialization to planar motion.
In this case, it works out okay, but you might ask yourself why you can’t
equally well take the motion to lie in the θ = 0 plane? We will address this
later on when we discuss the Hamiltonian.

Putting θ = π
2 reduces the dimensionality of the problem. We may now

consider a two-dimensional metric with dxα=̇(dρ, dφ), and

gµν=̇

(
1
ρ4

0
0 1

ρ2

)
. (3.5)

Our Lagrangian in these coordinates reads:

L =
1
2
m

(
ρ̇2

ρ4
+
φ̇2

ρ2

)
− U(ρ). (3.6)
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At this point, we could play all the usual games, but it is easiest to note
that there is no φ dependence in the above, i.e. φ is an ignorable coordinate.
From the equation of motion, then:

d

dt

(
∂L

∂φ̇

)
= 0 (3.7)

we learn that the momentum conjugate to φ (defined by ∂L
∂φ̇

) is conserved.

So we substitute a constant for φ̇:

∂L

∂φ̇
= Jz =

mφ̇

ρ2
→ φ̇ =

Jz
m
ρ2. (3.8)

Now take the equation of motion for ρ, substituting the Jzρ2/m for φ̇(
d

dt

(
∂L

∂ρ̇

)
− ∂L

∂ρ

)∣∣∣∣
φ̇=Jz

m
ρ2

= m
d

dt

(
ρ̇

ρ4

)
+ 2mρ̇2ρ−5 +

J2
z

m
ρ+

dU

dρ

= m
ρ̈

ρ4
− 4m

ρ̇2

ρ5
+ 2mρ̇2 ρ−5 +

J2
z

m
ρ+

dU

dρ

= m
ρ̈

ρ4
− 2m

ρ̇2

ρ5
+
J2
z ρ

m
+
dU

dρ
.

(3.9)

We can reparametrize – rather than finding the time development of the ρ(t)
and φ(t) coordinates, the geometry of the solution can be uncovered with
ρ(φ) – so note that:

ρ̇ = ρ′ φ̇ = ρ′
Jz
m
ρ2

ρ̈ = ρ′′ φ̇
Jz
m
ρ2 + ρ′

Jz
m

2 ρ ρ̇ = ρ′′
(
J2
z

m2
ρ4

)
+ 2 ρ′2

J2
z

m2
ρ3

(3.10)

and putting this into the equation of motion gives

0 =
J2
z

m
ρ′′ +

2 J2
z

m
ρ′2ρ−1 − 2m

(
ρ′2

J2
z

m2

)
ρ−1 +

J2
z ρ

m
+
dU

dρ
(3.11)

Or, finally,

−dU
dρ

=
J2
z

m
ρ′′ +

J2
z

m
ρ. (3.12)
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Where’s the gravity? In the potential, the potential for Newtonian gravity
is U = −GmM

r = −GmM ρ, and that’s easy to differentiate:

GM

(
m

Jz

)2

= ρ′′ + ρ→ ρ(φ) = GM

(
m

Jz

)2

+ α cosφ+ β sinφ. (3.13)

Simple, right? What type of solution is this? Keep in mind that GM m2

J2
z

is
just a constant, so what we really have is:

r(φ) =
1

A+ α cosφ+ β sinφ
. (3.14)

As a harmonic oscillator in φ, let’s agree to start at “velocity zero” at φ = 0.
This means that

r′(φ) = −(A+ α cosφ+ β sinφ)−2(−α sinφ+ β cosφ) |φ=0 = 0→ β = 0
(3.15)

so that

r(φ) =
1

A+ α cosφ
, (3.16)

and this familiar solution is shown in Figure 3.1.

r(0) =
1

A + α
r(π) =

1
A− α

φ

r(φ) =
1

A + α cos φ

x̂

ŷ

Figure 3.1: Ellipse in r(φ) parametrization

That’s the story with elliptical orbits. We used the Lagrange approach to
find a first integral of the motion (Jz), then we solved the problem using
φ as the parameter for the curve (r(φ), φ)). There are a couple of things
we will be dropping from here on out – the first is to set G = 1, this just
changes how we measure masses. We can also set the test mass m = 1, it
cannot be involved in the motion – this choice just rescales Jz.
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3.2 More on Tensors

In preparation for the Hamiltonian form, I want to be more careful with
my definition of tensors. Again, we will be covering this in a lot of detail
relatively soon, but I want to discuss a few key points right now.

There are two varieties of tensor with which we will need to become familiar.
A tensor, for us, is defined by its behavior under a coordinate transformation.
In particular, if we have an indexed object fα(x) that depends on a set of
coordinates x and we change to a new coordinate system x → x′, then a
contravariant tensor transforms via:

f ′α(x′) = fν(x′)
∂x′α

∂xν
, (3.17)

and it is important to remember that the right-hand-side should (morally
speaking) be expressed entirely in terms of the new coordinate system (so
that, for example, what we mean by fν(x′) is really fν(x(x′)), i.e. we take
the original vector in x coordinates, and rewrite the x in terms of the x′,
the same holds for the transformation factor ∂x′α

∂xν ).

A covariant tensor responds to coordinate transformations according to

f ′α(x′) = fν
∂xν

∂x′α
. (3.18)

The standard example of a contravariant tensor is the coordinate differential
dxα, and the most famous covariant tensor is the gradient: ∂φ

∂xα ≡ φ,α.

The fun continues with more indices – we introduce the appropriate trans-
formation factor for each index:

f ′αβ(x′) =
∂x′α

∂xµ
∂x′β

∂xν
fµν

f ′αβ(x′) =
∂xµ

∂x′α
∂xν

∂x′β
fµν

(3.19)

There is no particular reason to imagine that these two different objects
(covariant and contravariant tensors) are connected, but within the confines
of the geometry we will be studying, they are. We use precisely the metric
and its matrix-inverse to define raising and lowering operations. So, for
example, we have

fα = gαν f
ν (3.20)
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and if we set gαν ≡(gµν)−1 the matrix inverse of gµν , then

fα = gαν fν . (3.21)

The importance of the inverse is to recover:

fα = gαν f
ν = gαν

(
gνβ fβ

)
= δβα fβ = fα. (3.22)

The coordinate definitions you know and love are dxµ=̇(dx, dy, dz), and this
begs the question – how has the distinction between up and down never
come up in the past? We’re used to writing x, that doesn’t appear to be
either up or down.

The answer can be made clear with a simple example. Suppose we take
non-orthogonal axes in two-dimensions. Then we can measure, in these
coordinates, the projection (parallel to the skewed axes) of the vector shown

in Figure 3.2. We would write vα =
(
a
b

)
.

a ā = a + b sin θ

b

θ

b + a sin θ

b̄
=

b
c
o
s
θ

Figure 3.2: The difference between covariant and contravariant.

We want to find the metric in the skewed coordinate system – so let’s cal-
culate the Cartesian components of the vector, they are:(

ā
b̄

)
=
(

1 sin θ
0 cos θ

)(
a
b

)
, (3.23)

and then in this notation, the length of the vector is:(
ā b̄

)( ā
b̄

)
=
(
a b

)( 1 sin θ
sin θ 1

)(
a
b

)
. (3.24)
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By definition, the matrix in the middle is the metric for the non-orthogonal

space. Now if we take the vector vα=̇
(
a
b

)
, then the lowered form is

vα = vβgβα, and performing the contraction, we have

vα=̇
(
a+ b sin θ
b+ a sin θ

)
. (3.25)

Referring to the figure again, these two quantities are indicated by the
dashed lines, i.e. the components of the covariant vector vα are the co-
ordinates w.r.t. the perpendicular projection onto the non-orthogonal basis.

If we always use orthonormal axes, the distinction never arises, since in that
case, the perpendicular projection is identical to the parallel projection.
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