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Today, we look at an entirely new type of geodesic for the Schwarzschild
geometry – light. In classical, Newtonian gravity, this is not something we
can sensibly ask about – but as a geodesic on a manifold, light is not that
strange – we ask, for the physical particulars of the photon (null tangent
vectors) what a “straight line” looks like, as always. There is some confusion
about the physical interpretation of the “proper time” – that is naturally
built in to the discussion and had better exist. After all, the proper time of
light is an ill-defined concept.

It is worth noting the null-vector (ds2 = 0) nature of these photon trajec-
tories, they crop up again when we talk about coordinate transformations
and one can draw an interesting parallel between the coordinate time and
the “proper time”.

31.1 Light in Schwarzschild Geometry

Light is “just another” test particle in GR, on a semi-equal footing with
(time-like) particles. It does make some sense to separate the treatments,
but as you will see, there is almost no difference in the calculation.

How do we describe light? Well, its rest mass is zero, i.e. the invariant
four-momentum magnitude is (in Minkowski space-time) −E2 + ~p · ~p = 0.
That tells us in our Lagrange setting, that L = H = 0 rather than the
−1

2 we had in the previous section. On the metric side, this is just another
option for us – for a metric with a time-component (typified by the −1 in
η00) we cannot say that a “length” of zero implies that the vector is zero.
Material particles must have “time-like” or dτ2 = −1 character (for affine
parametrization with τ the proper time), then “light-like” means dτ2 = 0
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and “space-like” has dτ2 = 1, the normalization of spatial coordinate axes.
Regardless, here we will deal with light-like “particles”: light. Notice that
since dτ2 = 0, our notion of proper time for light is no longer sensible, we
can still parametrize the curve, though, and without confusion, let me call
this parametrization τ .

The setup is identical to the Test Particle section, so we can cut to the chase
– start with the Schwarzschild metric written in the ρ coordinate, we again
set the motion in the θ = π

2 plane, identify Jz as the canonical momentum
associated with φ (and so constant), and −E, the canonical momentum for
t, also constant. The first difference occurs at the “L = −1

2” of massive
particle analysis. For light, with L = 0 we have:

0 = L =
1
2

(
J2
z ρ

2 − E2 ρ4 − ρ̇2

ρ4 (1− 2M ρ)

)
↓

ρ̇2 = ρ4

(
E2

J2
z

− ρ2 + 2M ρ3

)
.

(31.1)

Switching again to φ derivatives via ρ̇ = ρ′ Jz ρ
2 gives us the analogue of

ρ′′ = −ρ+ M
J2

z
+ 3M ρ2:

ρ′′ = −ρ+ 3M ρ2. (31.2)

Now let’s think a bit about the meaning of the M = 0 solution, the one we
would get from, for example, special relativity. It says that the trajectory
of light, written in parametric form in the x− y plane is

x = r cosφ =
cosφ

α cosφ+ β sinφ

y = r sinφ =
sinφ

α cosφ+ β sinφ
,

(31.3)

and we can set the coordinates such that in the M = 0 limit, we have
a horizontal line passing a distance R from the origin by putting α = 0,
β = R−1 (never mind the funny cotφ, with these choices y = R always,
clearly a line – x goes from −∞ −→∞). So we would say that light passes
unperturbed through empty space (or in a space-time that ignores GR, like
Minkowski).

Again, the M 6= 0 case is best handled through perturbation – let us take a
solution of the form ρ = sinφ

R + ε ρ̃, then we see that

− 1
R

sinφ+ ε ρ̃′′ = −
(

1
R

sinφ+ ε ρ̃

)
+ 3M

(
1
R

sinφ+ ε ρ̃

)2

(31.4)
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and if we associate our ε expansion parameter with the mass M of the
gravity-producing object (this is the point here: for M = 0, we get a line)
then to first order, we can read off the equation for ρ̃:

ρ̃′′ = −ρ̃+
3
R2

sin2 φ. (31.5)

31.1.1 Aside: Generic Solution of Inhomogenous, Linear
ODEs

I just want to take a moment to talk about the simple relationship be-
tween source-free solutions of first order ODEs and their driven solutions
– take:

f ′(x) = Af(x) (31.6)

where we are (here and only here) viewing f(x) as a vector and A as a
matrix (x is just the single parameter in the problem, time for example).
The solution is:

f(x) = eAx f(0) (31.7)

where we mean matrix exponentiation (defined in terms of the powers
of matrices just as with normal exponentials).

Suppose we add a source G(x), some function of x, then we have

f ′(x) = Af(x) +G(x), (31.8)

but that looks a lot like a change of center – as if we added a constant to
a spring equation for example. Motivated by this, let’s see what happens
if we add a continuous shift, consider:

f̄(x) ≡ eAx (f(0) + g(x))→ f̄ ′(x) = A f̄ + eAx g′(x). (31.9)

That’s perfect, compare with the above, and we see that f̄(x)
solves (31.8) if we set

eAx g′(x) = G(x)→ g′(x) = e−AxG(x)→ g(x) =
∫ x

0
e−A x̄G(x̄) dx̄

(31.10)
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where we have made some assumptions effectively about the invertibility
of A, but don’t worry for now. Going back, the form for f̄(x) is

f̄(x) = eAx f(0) + eAx
∫ x

0
e−A x̄G(x̄) dx̄. (31.11)

Solving inhomogenous ODEs amounts to exponentiating a matrix and
doing some integration. Let’s apply this idea to the above problem, the
homogenous part is given by

d

dφ

(
ρ̃
ρ̃′

)
=
(

0 1
−1 0

) (
ρ̃
ρ̃′

)
, (31.12)

and we can immediately tell what the matrix A in the above has as its
exponential – we know the solution is ρ(φ) = ρ(0) cosφ+ ρ̇(0) sinφ so

eAφ =
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)
→ e−Aφ =

(
cosφ − sinφ
sinφ cosφ

)
(31.13)

With this “fundamental” solution, let’s calculate the source integral:

eAφ
∫ φ

0
e−A φ̄

(
0

sin2 φ̄
R2

)
dφ̄ =

1
R2

eAφ
∫ φ

0

(
− sin3 φ̄

cos φ̄ sin2 φ̄

)
dφ̄

=
(

1
3R2

)(
4 sin4(1

2 φ)
2 sinφ− sin(2φ)

)
(31.14)

All right, you could have done it faster, but this is generic, isn’t that
great?! Anyway, the point of all this:

ρ̃(φ) = α cosφ+ β sinφ+
sin4(1

2 φ)
R2

= α cosφ+ β sinφ+
3− 4 cosφ+ cos(2φ)

2R2

(31.15)

and we can get rid of the first two terms – this is all within the pertur-
bation, and we already have the proper normalization for straight line
motion, we can also drop the 4 cosφ term by appropriate choice of α (in
order to get rid of both of them).
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The punch line of the above is that

ρ(φ) =
sinφ
R

+M
(1 + cos2 φ)

R2
(31.16)

solves (31.2) to first order in ε ∼ M . What do these trajectories look like?
They are bent about the φ = 1

2 π axis – reaching a closest approach to the
massive body at rgraze = R2

M+R (setting φ = 1
2 π) and crossing the body’s

plane at φ = 0 → rplane = R2

2M . Now part of our assumption of small M is
that the bending is slight, we can see this at the axis crossing, rplane ∼M−1,
so if we are sitting far away (at infinity effectively), the angle made w.r.t.
the axis is small as shown in Figure 31.1, this is our viewing angle φv.

φv

ψ

A

B

Figure 31.1: The path of light, deflected about a massive object. We are
viewing from far away with a viewing angle φv, the light is “deflected” by
the angle ψ.

At spatial infinity, ρ = 0, and we assume this is where our viewing platform
is set up. Then for φ = −φv (φ in this picture starts at zero on the axis, so
we are at a negative value for the angle) and φv small, we have

0 = ρ(φv) ≈
2M
R2
− φv
R
→ φv =

2M
R

(31.17)

and by symmetry, here, we have the deflection angle ψ = 2φv so

ψ =
4M
R

(31.18)

using R = Rsun = 6.96× 105 km and M = 1.483 km, the mass of the sun in
kilometers,

ψ ≈ 8.523× 10−6 = 4.8× 10−4 deg× 602arcsec
1deg

≈ 1.76 arcsec.
(31.19)
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In other words, if we assume we are looking along the straight dotted line of
our viewing angle in Figure 31.1, we would say that the light we see comes
from point A, while due to bending it came from point B, a deflection of ψ.
In the case of grazing deflection (that’s why we set R = Rsun) this is still
an incredibly small effect.
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