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We turn now to Hamilton’s formulation of the equations of motion. This
discussion parallels our Lagrange studies, but as in strict classical mechanics,
new avenues of discovery are open to us using the Hamiltonian. In particular,
there is almost no better place to discuss invariance and conservation, a
beautiful correspondence that is incredibly important to GR.

As you probably know already, general relativity can be viewed as a “theory
without forces”, and here the Hamiltonian plays an even more interesting
role, because it is numerically identical to the Lagrangian. So it behooves us
to use as much of one or the other approach as we find useful. In order to set
the stage, we re-derive and solve the equations of motion for the Keplerian
ellipse. I hope the clothing is different enough to hold your interest.

4.1 Legendre Transform

To develop the Hamiltonian form and the generators themselves, we need
the notion of a Legendre transformation. In general, this is a special trans-
formation that allows us to replace variables in a function in a consistent
manner. We’ll start with the definition and some examples in one dimension.

4.1.1 One Dimensional Legendre Transformation

Consider an arbitrary function of x: f(x). We know that locally, the slope
of this curve is precisely its derivative w.r.t. x, so the change in the function
f(x) at the point x for a small change in the argument, dx is

df =
df

dx
dx ≡ p(x) dx p(x) ≡ df(x)

dx
(4.1)
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as usual. Now suppose we want to find a function that reverses the roles of
the slope and infinitesimal, i.e. a function g(p) such that dg = x dp (where
we now view x as a function of p defined by the inverse of p = f ′(x)). It is
easy to see that the function:

g(p) = p x(p)− f(p), (4.2)

called the Legendre Transform, has

dg = x dp+ p dx− df = x dp, (4.3)

as desired. Notice that since g(p) is a function of p only, we must have
x = dg

dp just as we had p = df
dx before. So we have a pair of functions f(x)

and g(p) related in the following way:

f(x) −→ g(p) = x(p) p− f(x(p)) x(p) :
df(x)
dx

= p

g(p) −→ f(x) = p(x)x− g(p(x)) p(x) :
dg(p)
dp

= x,

(4.4)

where the pair f(x) and g(p) are Legendre transforms of each other. There
is a nice symmetry here, the same transformation takes us back and forth.
Let’s look at an example to see how this works out.

Consider the function f(x) = αxm for integer m. We can define p from
the derivative of f(x) as prescribed above:

df

dx
= αmxm−1 = p −→ x(p) =

( p

αm

) 1
m−1

. (4.5)

With this assignment, we can construct f(x(p)) ≡ f(p) – it is

f(p) = α
( p

αm

) m
m−1

, (4.6)

and the Legendre transform is:

g(p) = p x(p)− f(p) =
(

1
αm

) 1
m−1

p
m

m−1 − α
( p

αm

) m
m−1

= p
m

m−1

[(
1
αm

) 1
m−1

− α
(

1
αm

) m
m−1

]
.

(4.7)
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Now take the reverse point of view – suppose we were given g(p) as
above, if we define x = dg

dp , and form the Legendre transform of g(p):
h(x) = p(x)x − g(x) (with g(x) ≡ g(p(x))), then we would find that
h(x) = αxm, precisely our starting point.

The polynomial example is a good place to see the geometrical implications
of the Legendre transformation. Remember the goal, unmotivated at this
point: we took a function f(x) with infinitesimal df = p dx (for p ≡ df

dx),
and found a function g(p) with infinitesimal dg = x dp, reversing the roles
of the derivative and argument of the original f(x). The procedure is shown
graphically in Figure 4.1.

x x + dx p

dp

df = pdx

f(x) g(p)

dg = xdp

Figure 4.1: The Legendre transform constructs a function g(p) from f(x).
We are swapping the role of the local slope of the curve for its argument.

For concreteness, take m = 2 and α = 1, so that f(x) = x2 – then we
find from (4.7) that g(p) = p2

4 . But let’s try to construct the transform
g(p) graphically, using only the local slope and value of f(x). Start by
constructing the line tangent to the curve f(x) at a point x0, say. We know
that in the vicinity of x0, the slope of this line must be df

dx |x=x0 ≡ p0, and
then the equation for the line is:

f̄(x, x0) = p0 (x− x0) + f(x0), (4.8)

i.e. it has slope equal to the tangent to the curve at x0, and takes the value
f(x0) at x0. From this, we know that at the point p0, the function g(p)
has slope x0, reversing the roles of x0 and p0, but what is the value of the
function g(p0)? We don’t know from the differential itself – but if we go
back to the Legendre transform, we have:

g(p) = x(p) p−f(x(p)) −→ g(p0) = x(p0) p0−f(x(p0)) −→ g(p0) = x0 p0−f(x0),
(4.9)
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and we can use this value to construct the line going through the point p0

having slope x0:

ḡ(p, p0) = x0 (p− p0) + g(p0) = x0 p− f(x0) (4.10)

which means that the p-intercept of this line has value −f(x0). So we have
a graphical prescription: For every point x0, write down the slope tangent
to f(x0) (called p0) – on the transform side, draw a line having p-intercept
−f(x0) and slope given by x0 - mark its value at p0, and you will have the
graph of g(p).

In Figure 4.2, we see the graph of f(x) = x2 with four points picked out, the
lines tangent to those points are defined by (4.8), with x0 = 0, 1, 2, 3. For
example, for x0 = 3, we have p0 = 6, and f(x0) = 9. Referring to Figure 4.3,
the point at p0 = 6 can be found by drawing a line with p-intercept −f(x0) =
−9, and slope x0 = 3 – we mark where this line crosses p0 = 6, as shown.
In this manner, we can convert a graph of f(x) into a graph of g(p), and, of
course, vice versa.

1 2 3 4

1

3

5

7

9

−1

−3

−5

−7

−9

x

f(x) = x2

Figure 4.2: A graph of f(x) = x2 with some representative points and
tangent lines shown.
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g(p)

p
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Figure 4.3: The three relevant lines coming from the data in Figure 4.2,
used to define the curve g(p).

Notice, finally, that the curve defined by the three points in Figure 4.3 is
precisely described by g(p) = p2

4 .

Hamiltonian in Classical Mechanics

We can easily extend the above one-dimensional discussion to higher dimen-
sions. In classical mechanics, we often start with a Lagrangian, defined as
a function of x(t) and ẋ(t), say. Then we have in a sense, two variables
in L(x, ẋ), and we can promote ẋ to a full independent variable by setting
p = ∂L

∂ẋ , and performing a Legendre transform to eliminate ẋ in favor of p.
Define H via

H(x, p) = p ẋ(p)− L(x, p) p =
∂L

∂ẋ
L(x, p) ≡ L(x, ẋ(p)). (4.11)

Notice that we have performed the transformation on only one of the two
variables in the Hamiltonian. The prescription is: Use the definition of p to
find ẋ(p) and then write H(x, p) entirely in terms of p.

For example, if we have a simple harmonic oscillator potential, then

L(x, ẋ) =
1
2
mẋ2 − 1

2
k x2 (4.12)
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and p ≡ ∂L
∂ẋ = mẋ, so that ẋ = p

m , L(x, p) = 1
2
p2

m −
1
2 k x

2 and we can form
H(x, p) as above

H(x, p) = p
p

m
−
(

1
2
p2

m
− 1

2
k x2

)
=

1
2
p2

m
+

1
2
k x2. (4.13)

We recognize this as the total energy of the system (numerically).

For the usual Lagrangian in three dimensions: L = 1
2 mv2 − U(x), with

v2 = x · x, we can define the canonical momentum vector via px = ∂L
∂ẋ ,

py = ∂L
∂ẏ and pz = ∂L

∂ż and proceed to the Hamiltonian once again:

H(x,p) =
p2

2m
+ U(x), (4.14)

at least, in Cartesian coordinates. This is the starting point for Hamiltonian
considerations in classical mechanics, and we will begin by looking at some
changes that must occur to bring this natural form into usable, relativistic
notation.

4.2 Hamiltonian equations of motion

The first thing we have to deal with is Legendre transformations in our
generic space (or, later, space-time). We are used to writing the Hamiltonian
as (briefly employing “generalized coordinates” q)

H =
∑
i

pi q̇i − L

pi ≡
∂L

∂q̇i
.

(4.15)

In our new notation, we see there is already an issue here. Cartesian coordi-
nates form a contravariant tensor xα, but then the canonical momenta are
given by

pα =
∂L

∂ẋα
(4.16)

i.e. canonical momenta, unlike physical momenta, are covariant. That sug-
gests that we write our Legendre transform as

H = pα ẋ
α − L. (4.17)
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Remember the point of the Hamiltonian approach – we want to treat pα and
xα as independent entities. The variational principle gives us, directly:

S =
∫
dtL =

∫
dt (pα ẋα −H)

δS

δpα
= ẋα − ∂H

∂pα
= 0

δS

δxα
= −ṗα −

∂H

∂xα
= 0.

(4.18)

Using our tensor notation, L = 1
2 ẋ

µgµν ẋ
ν−U(r) for a spherically symmetric

potential, we get, as the canonical momenta:

∂L

∂ẋα
= gµα ẋ

µ = pα (4.19)

so that

H = pα ẋ
α − L = pα p

α −
(

1
2
ẋµ gµν ẋ

ν − U(r)
)

= pα g
αβ pβ −

1
2
pα g

αβ pβ + U(r)

=
1
2
pα g

αβ pβ + U(r).

(4.20)

From here, we can write down the equations of motion directly:

ẋα =
∂H

∂pα
= gαβ pβ

ṗα = − ∂H
∂xα

= −
(

1
2
pµ g

µν
,α pν + U,α

)
.

(4.21)

As we shall soon see, the triply indexed object gµν,α is not a tensor – this
will be one of the highlights of next week. The point is, we cannot raise and
lower the (µ, ν) indices as we would like – instead I mention the identity

gµν ,α = −gµγ gνδ gγδ,α, (4.22)

then the equation for ṗα from above is

ṗα =
1
2
pµ

(
gµγ gνδ gγδ,α

)
pν − U,α

=
1
2
pγ gγδ,α p

δ − U,α.
(4.23)
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Let’s introduce coordinates – suppose we are already in the reduced two-
dimensional space, (ρ, φ) with metric (inspired by our Lagrangian studies)

gµν=̇

(
1
ρ4

0
0 1

ρ2

)
. (4.24)

We have:
H =

1
2
(
ρ4 p2

ρ + ρ2 p2
φ

)
+ U(r) (4.25)

then the equations of motion are given by

ρ̇ =
∂H

∂pρ
= ρ4 pρ

φ̇ =
∂H

∂pφ
= ρ2 pφ

(4.26)

and we recognize the second equation from the definition of Jz. For the rest:

ṗρ = −∂H
∂ρ

= −2 ρ3 p2
ρ − ρ p2

φ −
∂U

∂ρ

ṗφ = −∂H
∂φ

= 0.
(4.27)

Here again, the second equation is familiar – “ignorable coordinates have
conserved momenta”.

Putting the derivatives together, we can write the equation of motion in
terms of ρ̈:

ṗρ =
d

dt

(
ρ̇

ρ4

)
=

ρ̈

ρ4
− 4

ρ̇2

ρ5
= −2 ρ3

(
ρ̇2

ρ8

)
− ρ p2

φ −
∂U

∂ρ
(4.28)

or
ρ̈

ρ4
− 2

ρ̇2

ρ5
+ ρ p2

φ = −∂U
∂ρ

(4.29)

which is the same as our Lagrange equation of motion (with pφ = Jz).

We haven’t yet gotten to the point of using H rather than L – it’s coming,
and to set the stage we must discuss transformations.
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4.3 Canonical Transformations

A transformation takes a set of coordinates and momenta (xα, pα) and
changes each (in theory independently) into a new set (Xα, Pα). The trans-
formation is called “canonical” if the new system is a Hamiltonian system
with Hamiltonian H ′(X,P ) = H(x(X,P ), p(X,P )) – that is to say, if the
new system has the Hamiltonian “equations of motion”:

∂H ′

∂Pα
= Ẋα

∂H ′

∂Xα
= −Ṗα.

(4.30)

Basically what we are doing is allowing any coordinate transformation of X
and P . Of course, these are linked through the canonical momenta to Ẋ,
and we want to make sure that that linkage respects the Hamiltonian-ness.

Take a simple harmonic oscillator, we have H = 1
2 p

2 + 1
2 x

2. Now if we
“transform” using y = 1

2 x then H ′ “=”1
2 p

2 + 2 y2 and the equations of
motion, if we just viewed this as a Hamiltonian, give the wrong frequency
of oscillation.

If instead we went back to the Lagrangian L = 1
2 ẋ

2− 1
2 x

2, then we carry
the transformation through the ẋ term, and L = 2 ẏ2− 2 y2 and we find
out we should have had ∂L

∂ẏ = 4 ẏ = p as the canonical momentum so
that

H = (4 ẏ) ẏ − L = 4 ẏ2 − (2 ẏ2 − 2 y2) = 2 ẏ2 + 2 y2 =
p2

8
+ 2 y2 (4.31)

which again gives the correct equation of motion.

While we are free to make any transformation we like, somehow the X
and P variables are coupled if we want to make a Hamiltonian out of the
resulting system. What constraints can we place on (X,P ) to ensure
this happens?

4.3.1 Generating Functions

Let’s go back – we had a variational principle that generated the equations
of motion, so equivalent to asking that the form of the equations of motion
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be retained is the requirement that the variations be identical:

δ

(∫
dt (pα ẋα −H(x, p))

)
= δ

(∫
dt
(
Pα Ẋ

α −H ′(X,P )
))

. (4.32)

This is one of those cases where it is not enough to just set the integrands
equal (although that would certainly be a solution). What if we had a total
time derivative on the right? That would look something like:∫ tf

t0

dt K̇ = K(tf )−K(t0) (4.33)

i.e. it would contribute a constant – the variation of a constant is zero,
so evidently, we can add any total time derivative to the integrand on the
right-hand side without changing the equations of motion.

Our expanded notion is that

pα ẋ
α −H(x, p) = Pα Ẋ

α −H ′(X,P ) + K̇. (4.34)

K̇ is fun to write down – but what is it? Hamiltonians are generally functions
of position and momentum, so K must be some function of these, possibly
with explicit time dependence thrown in there as well.

Remember the goal – we want to connect two sets of data: (x, p) and (X,P ).
If we are to have a prayer of using K efficiently, we must make it a function
of at least one variable from the original (x, p) set, one variable from the
(X,P ) set. There are four ways to do this, and it doesn’t much matter
which one we pick. For now, let K = K(x,X, t), then

d

dt
K =

∂K

∂x
ẋ+

∂K

∂X
Ẋ +

∂K

∂t
. (4.35)

Inputting this into (4.34) gives us(
pα −

∂K

∂xα

)
ẋα −

(
Pα +

∂K

∂Xα

)
Ẋα = H −H ′ + ∂K

∂t
. (4.36)

We can make this true by setting:

pα =
∂K

∂xα
Pα = − ∂K

∂Xα

∂K

∂t
= 0 H = H ′ (4.37)

While this does have the correct counting, K(x,X) itself is not the most
useful generating function. For reasons that will become clear next time, we
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would prefer to use a generator K̄(x, P ). How can we find such a function?
Well, from our discussion of Legendre transformations, it is apparent that we
could replace X with P via a Legendre transformation taking K(x,X) −→
K̄(x, P ). But in order for these to be Legendre duals, we must have ∂K

∂X = P
– that is precisely (modulo a minus sign) the requirement in (4.37). Suppose,
then, that we construct K̄(x, P ) as the Legendre transform of K(x,X):

K̄(x, P ) = PαX
α +K(x,X)

∂K

∂Xα
= −Pα, (4.38)

as an explicit check, we can show that our K̄(x, P ) is independent of X:

∂K̄

∂Xα
= Pα +

∂K

∂Xα
= 0. (4.39)

Now (4.34) reads:

pα ẋ
α −H = Pα Ẋ

α −H ′ + d

dt

(
K̄ − PαXα

)
d

dt
K̄ =

∂K̄

∂xα
ẋα +

∂K̄

∂Pα
Ṗα,

(4.40)

so (
pα −

∂K̄

∂xα

)
ẋα +

(
Xα − ∂K̄

∂Pα

)
Ṗα = H −H ′ (4.41)

and the relevant transformation connection is

pα =
∂K̄

∂xα
Xα =

∂K̄

∂Pα
H = H ′. (4.42)

For our harmonic oscillator example, we want x = 2X as the transformation,
so from the second of the above we have K̄ = 1

2 xP , then the first tells us
p = 1

2 P , and we can transform the Hamiltonian:

H =
1
2
p2 +

1
2
x2 → H ′ =

1
8
P 2 + 2X2, (4.43)

which is what we got from Lagrangian considerations.
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