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Here we continue with the Hamiltonian formulation of the central body
problem – we will uncover the real power of the approach by considering
transformations, finding conserved quantities and using them to reduce the
number (and degree) of ODEs we get in the equations of motion.

Our first goal is to prove Noether’s theorem on the Hamiltonian side, and
we are poised to do this. Then we will develop constants of the motion for
Euclidean space written in spherical coordinates. These, of course, corre-
spond to angular momentum conservation and total energy conservation.
We will focus on the solution of the ODE’s that naturally arise in this situ-
ation – this will also shed some light on the equatorial plane issue discussed
previously.

5.1 Canonical Infinitesimal Transformations

We had, at the end of last time, the generic form for a canonical transfor-
mation – one that led to a new Hamiltonian system (by which I mean one
whose equations of motion are of the usual form). The transformation is
generated by a function which we called K̄(x, P ), and connects the “old”
coordinates and momenta (xα, pα) with the new set (Xα, Pα) via:

pα =
∂K̄

∂xα
Xα =

∂K̄

∂Pα
. (5.1)

The advantage of this form over the K(x,X) form is clear from the identity
transformation:

K̄ = xα Pα. (5.2)
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This generates Xα = xα and Pα = pα trivially. We will be looking at
small perturbations from identity, and the K̄(x, P ) generator is well-suited
because it is easy to write the identity transformation from this form.

Our goal here is to look at canonical infinitesimal transformations – the
question will eventually be, what are the transformations that leave the
entire problem invariant (and not just form invariant)? So we must first be
able to talk about generic transformations.

Of course, most transformations are complicated, so in order to discuss a
generic one, we make a small linear transformation. This turns out (for
deep and not so deep reasons) to suffice – we can put together multiple
infinitesimal transformations to make big complicated ones.

To start off, then, we make a small change to the coordinates and momenta:

Xα = xα + ε fα(x, p)
Pα = pα + ε hα(x, p).

(5.3)

That is: our new coordinates and momenta differ from the old by a small
amount and depend on functions of the old coordinates and momenta.

We must express this situation in terms of K̄ – we want K̄ to generate the
small transformations above, so we add a little piece to the identity:

K̄ = xα Pα + ε J(x, P ). (5.4)

Well then, we have directly from the generator K̄:

pα =
∂K̄

∂xα
= Pα + ε

∂J

∂xα

Xα =
∂K̄

∂Pα
= xα + ε

∂J

∂Pα
= xα + ε

(
∂J

∂pβ

∂pβ
∂Pα

)
= xα + ε

(
∂J

∂pβ
δαβ +O(ε)

)
(5.5)

and comparing with (5.3), this tells us

fα =
∂J

∂pα

hα = − ∂J

∂xα
.

(5.6)
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5.2 Rewriting H

Excellent – now what? Well, we have a transformation, generated by J(x, p)
(an infinitesimal generator) that is defined entirely in terms of the original
coordinates and momenta. We can now ask how H changes under the trans-
formation:

H(x+ ε f, p+ ε h)−H = ε

(
∂H

∂xα
fα +

∂H

∂pα
hα

)
=
∂H

∂xα
∂J

∂pα
− ∂H

∂pα

∂J

∂xα

≡ [H,J ],

(5.7)

where the final line serves to define the usual “Poisson Bracket”. That’s
nice, because consider the flip side of the coin – the change in J as a particle
moves along its trajectory is given by:

dJ

dt
=

∂J

∂xα
ẋα +

∂J

∂pα
ṗα

=
∂J

∂xα
∂H

∂pα
− ∂J

∂pα

∂H

∂xα
= −[H,J ].

(5.8)

We have used the Hamiltonian equations of motion to rewrite ẋα and ṗα –
so we are assuming that xα(t) and pα(t) take their dynamical form (i.e. that
they satisfy the equations of motion). This gives us the time-derivative of
J along the trajectory.

Now, the point: If we have a function J such that [H,J ] = 0, then we know
that:

• The Hamiltonian remains unchanged under the coordinate trans-
formation implied by J : ∆H = [H,J ] = 0.

• The quantity J is a constant of the motion J̇ = −[H,J ] = 0.

But keep in mind, J is intimately tied to a transformation! This is the
Noetherian sentiment.
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We have expanded our notion of transformation from its Lagrangian roots
– now we can talk about transformations to coordinates and momenta as
long as they can be generated (at least infinitesimally) by J .

5.2.1 Example

As a simple example to see how this works, let’s take one dimensional motion
under the potential U(x) – the Hamiltonian is:

H =
p2

2m
+ U(x). (5.9)

We will attempt to solve the PDE [H,J ] = 0 for J(x, p) a function of x and
p. The vanishing Poisson Bracket is easy to write:

U ′(x)
∂J

∂p
− p

m

∂J

∂x
= 0. (5.10)

Now, how can we solve for J? Let’s use separation of variables for starters
(and finishers) – take an additive separation: J = Jx(x) + Jp(p), then we
have:

U ′(x)J ′p(p)−
p

m
J ′x(x) = 0, (5.11)

and to make the usual separation argument, we must divide by the product
(U ′(x)p), and then we can simply set:

J ′p(p)
p

= α =
J ′x(x)
mU ′(x)

(5.12)

in order to solve (5.11). This gives J ′p(p) = 1
2 αp

2 and Jx(x) = αmU(x)
(plus constants of integration which just add overall constants to J – since J
generates transformations via its derivatives, additive constants do not play
an interesting role). Then we have:

J = αm

(
p2

2m
+ U(x)

)
= αmH. (5.13)

This tells us that any generator proportional to H is a constant of the motion
(can you see what transformation is generated by this choice?) – no surprise,
[H,H] = 0 automatically.
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Suppose we instead consider multiplicative separation (familiar from, for
example, E&M) – take J(x, p) = Jx(x) Jp(p), then the Poisson Bracket
relation reads:

Jx J
′
p U
′ − p

m

(
Jp J

′
x

)
= 0 (5.14)

and dividing by (J U ′ p) allows separation with constant α:

J ′p
p Jp

= α =
J ′x

mJx U ′
(5.15)

and this has solution

Jx = γ eαmU Jp = β e
αp2

2 , (5.16)

for constants γ and β. Putting it together with an overall factor out front:

J = J0 e
αm

„
p2

2m
+U

«
= J0e

αmH . (5.17)

We can now define the infinitesimal transformation for this J :

X = x+ ε
∂J

∂p
= x+ ε J0 αm︸ ︷︷ ︸

≡β

∂H

∂p
eαmH = x+ β

p

m
eαmH

P = p− ε ∂J
∂x

= p− β ∂H
∂x

eαmH = p− β U ′ eαmH ,

(5.18)

and, as advertised, if we rewrite the Hamiltonian in terms of these variables:

H =
1

2m
(
P + β U ′ eαmH

)2
+ U(X − β p

m
eαmH)

=
1

2m
(
P 2 + 2P β U ′ eαmH

)
+ U(X)− U ′(X)β

p

m
eαmH +O(β2)

=
P 2

2m
+ U(X) +O(β2),

(5.19)
which was the point of the Poisson brackets in the first place.

As for the utility, once we have learned that, for example, J = H has dJ
dt = 0

along the trajectory, then our work is highly simplified – let J = E, a number
(which we recognize as the total energy) – then

E =
p2

2m
+

1
2
k x2, (5.20)
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and we can generate a geometrical relation between p and x, shown in Fig-
ure 5.1. It is no surprise here that isosurfaces of constant energy E form
circles (for m = k = 1).

If we write H in terms of ẋ by replacing p, we have simplified our problem
– now we have a single first order ODE for ẋ to solve. This is the functional
utility of the constants of the motion we discover through Poisson Bracket
PDE.

5.3 Hamiltonian for the Central Potential

Let’s see how all of this plays out for our U(r) potential – our goal is to find
transformations that leave our Hamiltonian unchanged, and the associated
constants of the motion. We have

H =
1
2
pα g

αβ pβ + U(r). (5.21)

Now all we have to do is pick a J , a generator. Suppose we first ask:
“What coordinate transformations can I have that set the new coordinates
to a function purely of the old?”. In other words, we want Xα = xα +
ε fα(x) where fα(x) has no dependence on p. That tells us the form for J
immediately – from fα = ∂J

∂pα
we must have

J = pα f
α(x) (5.22)
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which also tells us that the transformation for momenta follows hα = −pβ ∂fβ

∂xα .

We have satisfied the “canonical infinitesimal transformation” requirement,
now we want to deal with ∆H = 0. I am concerned with finding specific
constraints on fα that will set [H,J ] = 0, then I know that J is conserved.
The Poisson bracket PDEs are

[H,J ] =
∂H

∂xα
fα − ∂H

∂pα
pβ
∂fβ

∂xα
= 0 (5.23)

and from the form of the Hamiltonian given above

∂H

∂xα
=

1
2
pβ pγ g

γβ
,α + U,α

∂H

∂pα
= pα.

(5.24)

Then we have 1

[H,J ] =
(
−1

2
pγ pβ gγβ,α + U,α

)
fα − gγδ pδ pα fα,γ

= −pα pβ
(

1
2
gαβ,γ f

γ + gαγ f
γ
,β

)
+ U,α f

α = 0.
(5.26)

Notice the two separate pieces to this: we must have both the term multi-
plying pα pβ equal to zero, and U,α f

α = 0 (which says that the coordinate
transformation must be orthogonal to the force). The first term is a geo-
metric statement, the second is physical.

In general relativity, where there is no potential, it is only the first term that
counts, and vectors fα satisfying this equation are called “Killing vectors”.
The side-constraint imposed by U can be dealt with after the general form
implied by the PDE

1
2
gαβ,γ f

γ + gαγ f
γ
,β = 0 (5.27)

is satisfied.

The above equation, with some massaging is “Killing’s equation”, and more
typically written as

fµ;ν + fν;µ = 0 fµ;ν ≡ fµ,ν − Γαµν fα (5.28)

a tensor statement – if true in one coordinate system, true in all.
1We use the result

gµαgαβ,γgβν = −gµν,γ , (5.25)

obtainable via the product rule for the ordinary derivative.
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5.4 Example

Let’s calculate a Killing vector in spherical coordinates. For the central po-
tential, the extra portion of (5.26) reads: ∂U

∂r f
r = 0 which we can accomplish

simply by setting f r = 0. For the other two components, I take:

fα=̇

 0
fθ(r, θ, φ)
fφ(r, θ, φ)

→ fα=̇

 0
r2 fθ

r2 sin2 θ fφ

 (5.29)

Then:
2 f2;2 = 2 (f2,2 − Γσ22 fσ) (5.30)

and
Γσαβ =

1
2
gσρ (gαρ,β + gβρ,α − gαβ,ρ) (5.31)

so that Γσ22 fσ = 1
2 (f2 g22,2) = 0, and we have

f2;2 = 2 f2,2 = 2 r2
∂fθ

∂θ
(5.32)

and so fθ = fθ(φ). By similar arguments, there is no r dependence in either
fθ or fφ. We are left with:

f2;3 + f3;2 = f2,3 + f3,2 − Γσ23 f
σ − Γσ32 f

σ

= r2
∂fθ

∂φ
+ 2 r2 sin θ cos θ fφ + r2 sin2 θ

∂fφ

∂θ
− 2 (

1
2

(g22,3 f
θ + g33,2 f

φ))

= r2
∂fθ

∂φ
+ r2 sin2 θ

∂fφ

∂θ
.

(5.33)

Finally, we need

f3;3 = f3,3 − Γσ33 f
σ =

∂f3

∂φ
− (−g33,2 f

2)

= r2 sin2 θ
∂fφ

∂φ
+
(

2 r2 sin θ cos θ fθ
)
.

(5.34)

So our two (remaining) PDEs are

0 = r2
(
∂fθ

∂φ
+ sin2 θ

∂fφ

∂θ

)
0 = r2 sin θ

(
cos θ fθ + sin θ

∂fφ

∂φ

)
.

(5.35)
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The bottom equation can be integrated:

fφ(θ, φ) = − cot θ
∫
fθ dφ+ fφ(θ), (5.36)

and then the top is(∫
fθ dφ+

∂fθ

∂φ

)
+
(

sin2 θ
∂fφ(θ)
∂θ

)
= 0. (5.37)

Because of the functional dependence here, we have a separation constant,
each term must be equal to L or −L, but I’ll set L = 0 and just solve, we
find fφ = F , a constant, and fθ = A cosφ+B sinφ.

Our final form for the Killing vector fα is

fα=̇

 0
A cosφ+B sinφ

F + cot θ (B cosφ−A sinφ)

 (5.38)

about which we shall say more next time.
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