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Using the Killing vectors we developed last time, and associated constants, I
will finish with the solution of orbital motion in the Hamiltonian framework.

The lesson of the Hamiltonian equations of motions, together with the con-
stants we can get from the Killing vectors is: if possible, never form them.
In more complicated settings, of course, one must write them down, but
by the time you’ve done that, it’s almost always a computational (meaning
“with a real computer”) effort to solve them. So the solution procedure here
looks quite a bit different than the equivalent Lagrange approach.

As I’ve mentioned before, and will probably point out a few more times:
one of the interesting things about GR as a topic is its lack of forces, which
makes L = H, and we can blend techniques between the two points of view.

6.1 Interpreting the Killing Vector

Remember where we were: we had solved the PDE that comes from Killing’s
equation:

pα pβ
(

1
2
gαβ,γ f

γ + gαγ f
γ
,β

)
= 0↔ f(α;β) = 0 (6.1)

We made a vector ansatz for fα, most importantly, we took away the f r

component. The motivation there came from the second piece of the [H,J ] =
0 requirement:

U,α f
α = 0→ ∂U

∂r
f r = 0 (6.2)

and for central potentials, this must have f r = 0 (since the derivative is
the force). Again, on the relativistic side, this is not an issue, and Killing
vectors come along for the ride once a metric is specified.
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With the ansatz in place, we solved the PDE to get a vector of the form

fα=̇

 0
A cosφ+B sinφ

F + cot θ (B cosφ−A sinφ)

 . (6.3)

Now the question is – what is this? Well, the first question is, how many is
this? We have three constants of integration floating around. These actually
correspond to three separate Killing vectors,

fα1 =̇

 0
0
F

 fα2 =̇

 0
A cosφ

−A cot θ sinφ

 fα3 =̇

 0
B sinφ

B cot θ cosφ

 .

(6.4)

Each of these vectors is involved in a transformation, Xα = xα + ε fα, so
the second vector, for example, induces:

R = r Θ = θ + ε (A cosφ) Φ = φ+ ε (−A cot θ sinφ). (6.5)

This is an infinitesimal transformation, it is also, by virtue of its derivation,
canonical.

What are the conserved quantities? For each of these transformations, we
should have a constant of the motion – precisely the generator J . Remember
the form of J :

J = pα f
α (6.6)

so suppose we take the first of the three transformations, then

J = pφ F. (6.7)

The F is really just a normalization, taken care of by ε – here we learn
that J = pφ is conserved and this comes from the transformation Φ =
φ + ε . That’s something we already knew, but gives a clue about the rest
of the Killing vectors – angular momentum conservation comes from the
rotational invariance of the equations of motion. If we took the Cartesian
transformation corresponding to infinitesimal rotation about a vector Ω ≡
(ωx, ωy, ωz) 1 ,

X = x + εΩ × x (6.8)

1To see (6.8), consider Ω = φ ẑ, and set a generic vector v in the x − z plane. Then
from Figure 6.1, we rotate about the z-axis, expressible as v′ = v + Ω × v.
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then, upon transformation to spherical coordinates, we would find (to first
order in ε):

Θ = θ + ε (ωy cosφ− ωx sinφ)
Φ = φ+ ε (ωz − cot θ (ωx cosφ+ ωy sinφ)).

(6.9)

Evidently, for our choice of constants (A,B, F ), we are describing the vector
Ω=̇(−B,A, F ).

x̂

ŷ

ẑ

φ

v = Rx̂ + zẑ
v′ = R(cos φx̂ + sinφŷ) + zẑ

∼ Rx̂ + zẑ + Rφŷ

= v + (φẑ)︸︷︷︸
≡Ω

×v

Figure 6.1: An infinitesimal rotation about the Ω ∼ ẑ axis for an arbitrary
vector v.

consider the generators J that comes from the other two vectors:

Jx = pθ sinφ+ pφ cot θ cosφ
Jy = pθ cosφ− pφ cot θ sinφ
Jz = pφ

(6.10)

this gives us the full complement of angular momenta, agreeing with the
spherical form for x × p.

So what?

6.2 Solution of Hamiltonian System

Let’s count: we have three constants of the motion so far, these can be used
to eliminate momenta or coordinates. In addition to these three, we have
H itself – after all, it’s hard to imagine a zero more compelling than [H,H],
so that’s four constants of the motion.
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We are not free to do anything we like, there is no pr in the angular momen-
tum constants, for example. Looking specifically at those, setting (Jx, Jy, Jz)
must lead to fixing two components of momentum and θ, if we take the Jz
equation at face value

Jx = pθ sinφ+ Jz cot θ cosφ
Jy = pθ cosφ− Jz cot θ sinφ

(6.11)

then suppose we want Jx = Jy = 0, we get two equations for pθ

pθ = −Jz cot θ cotφ pθ = Jz cot θ tanφ (6.12)

and this can only be zero for cot θ = 0→ θ = ±1
2 π.

This is the source of the difficulty we had on the Lagrange side. By setting
the motion in the equatorial plane, we were effectively setting Jx = Jy = 0,
leaving us with Jz. We do not have another choice of plane with Jx = Jy = 0.

With that in place, though, we automatically get pθ = 0 along with θ = 1
2 π,

and we can use this in the Hamiltonian:

H =
1
2
pα g

αβ pβ + U(r)

=
1
2

(
p2
r +

1
r2
p2
θ +

1
r2 sin2 θ

p2
φ

)
+ U(r)

=
1
2

(
p2
r +

1
r2
J2
z

)
+ U(r)

(6.13)

Now we can use the constancy of H to solve for p2
r – let’s call H = E, the

numerical constant, then solving for the pr component of momentum gives

p2
r = 2E − 2U(r)− 1

r2
J2
z . (6.14)

To connect this to the r velocity, we can use the equation of motion (or
definition of canonical momentum from the Lagrangian) – we have pr = ṙ,
and we can specialize to the Newtonian gravitational potential to get:

(ṙ)2 = 2E + 2
M

r
− J2

z

r2
=

1
r2
(
2E r2 + 2M r − J2

z

)
. (6.15)

It is difficult to imagine solving this if we took the square root, there is a
sign issue there, of course, but also the ODE gets more complicated. Let’s
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think about what we can get out of the above with no work. The first thing
we notice is that the term in parenthesis is quadratic in r. The roots of this
quadratic are points where ṙ = 0, which we associate with turning points of
the motion – suppose we explicitly factor the quadratic into its roots

ṙ2 =
2E
r2

(r − r+) (r − r−)

r+ =
1
2

−M
E

+

√(
M

E

)2

+ 2
J2
z

E


r− =

1
2

−M
E
−

√(
M

E

)2

+ 2
J2
z

E

 .

(6.16)

In a situation like this, a change of variables is in order – we know that
whatever r is, it has two turning points, with r− further away than r+, so
we are tempted to set

r(ψ) =
p

1 + e cosψ
(6.17)

this is, not surprisingly, an ellipse – the two turning points of an ellipse are

r(0) ≡ rp =
p

1 + e
r(π) ≡ ra =

p

1− e
(6.18)

and we can associate these with the turning points of our ṙ equation – this
tells us that

p

1 + e
= r+

p

1− e
= r− −→ Jz =

√
M p E =

M (e2 − 1)
2 p

(6.19)

Meanwhile, we also have

ṙ =
p e sinψ ψ̇

(1 + e cosψ)2
(6.20)

So our quadratic equation reads

(ṙ)2 =
p2 e2 sin2 ψ ψ̇2

(1 + e cosψ)4
= 2E

(1 + e cosφ)2

p2

(
p

1 + e cosψ
− p

1 + e

)(
p

1 + e cosψ
− p

1− e

)
= 2

M (e2 − 1)
2 p

(p+ e cosψ)2

p2

(
e (p− p cosψ) (−e(1 + p cosψ))

(1 + e cosψ)2 (1− e2)

)
= −M

p
(−e2)

(
sin2 ψ

)
(6.21)
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which gives

(ψ̇)2 =
M (1 + e cosψ)4

p3
. (6.22)

This is a particularly nice parametrization, and the starting point for many
computational investigations when the geometry becomes more complicated.

But what is the relationship of ψ to, for example, φ? We’ll perform a
change-of-variables:

ψ̇ =
dψ

dφ

dφ

dt
= ψ′ φ̇ = ψ′

(
Jz
r2

)
= ψ′

√
pM

(
1 + e cosψ

p

)2 (6.23)

and then
(ψ̇)2 = ψ′2

M

p3
(1 + e cosψ)4 =

M

p3
(1 + e cosψ)4 (6.24)

conclusion: ψ′ = 1, or ψ = φ (plus an arbitrary phase that we aren’t
interested in).

So we discover,
r(ψ) = r(φ) =

p

1 + e cosφ
(6.25)

as before, with (p, e) related to the energy and angular momentum of the
orbit through

Jz =
√
M p E =

M (e2 − 1)
2 p

. (6.26)

Incidentally, (p, e) are intrinsically greater than zero, but bound orbits have
E < 0 (they’re caught in a well), so for bound orbits, we want e2 < 1. Jz
can be positive or negative, Jz = ±

√
M p corresponding to the direction

(counterclockwise or clockwise) of the orbit.

We are, finally, done with orbital motion. I hope that I have convinced
you that L and H lead to different ways of viewing the solutions, but they
are entirely equivalent (as is evidenced by the fact that the solutions are
identical!).

It is not uncommon to characterize the more involved space-times (i.e. gµν)
that arise in general relativity in terms of the particle orbits they produce.
This somewhat long introduction will, I hope, prove useful when you are
handed some non-obvious metric and forced to discuss it in a reasonable
way.
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6.3 Temporal Evolution

Starting from (6.14), we can analyze the motion of any polynomial central
potential we wish using the techniques discussed above. The move to ψ = φ
parametrization is a particularly useful choice, and can tell us a lot about
the motion of the body, but we lose all temporal evolution information. We
can recover the time dependence a posteriori by explicit differentiation – for
our gravitational example:

dr

dt
=
dr

dφ

dφ

dt
(6.27)

and we know φ̇ = Jz
r2

. We can write a small change in t in terms of a small
change in φ from the above:

dt =
dr
dr
dφ φ̇

=
dφ

φ̇
=

p2 dφ

Jz (1 + e cosφ)2
, (6.28)

and we can integrate this from φ : 0 −→ 2π to find the total orbital period:

T =
∫ 2π

0

p2 dφ

Jz (1 + e cosφ)2
=

J3
z

M2

2π i
(e2 − 1)3/2

(6.29)

where we have used p2 = J4
z

M2 . Note that the semi-major axis of the orbit is
just

a ≡ p

1 + e
+

p

1− e
=

p

1− e2
(6.30)

so the period can be written in terms of this geometric parameter:

T = −2
√
M π a3/2, (6.31)

ignoring the minus sign, which is one of Kepler’s laws.

The fact that equal areas are swept out in equal times (another of Kepler’s
observations) comes directly from the infinitesimal area of an ellipse and
angular momentum conservation.

For the small triangle shown (enlarged) in Figure 6.2, we have approximate
area dA = 1

2 r
2 dφ, and if this is swept out in time dt, we can write:

dA

dt
=

1
2
r2 φ̇ =

1
2
Jz, (6.32)

a constant.
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dφ

r
r sin(dφ) ∼ rdφ

dA =
1
2
r(rdφ)

Figure 6.2: An ellipse in r(φ) parametrization – we make a small triangle
and use “one half base times height” with appropriate approximations to
find dA, the infinitesimal area.

6.4 Reparametrization

We chose, in this case, to reparametrize the Hamiltonian itself. Since it was
a constant, it furnished a first-order differential equation, and we used the
chain rule to rewrite ṙ = dr

dφ φ̇ – our expression for φ̇ in terms of r facilitated
this move. We can also reparametrize in the equations of motion, either
Hamiltonian or Lagrangian. It is interesting to ask, then, if it is possible
to directly reparametrize a Lagrangian. It is, of course, but the procedure
makes heavy use of the action S =

∫
Ldt – simply reparametrizing L is

not directly accessible since L is not a constant of the motion, in general,
and its physics is dictated by its equations of motion. This is an important
issue, and one to which we will return during our discussion of relativistic
Lagrangians and Hamiltonians, where reparametrization (and invariance)
play an even more central role.
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