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In Electrodynamics, the implicit law governing the motion of particles is
Fα = mẍα. This is also true, of course, for most of classical physics and
the details of the physical principle one is discussing are hidden in Fα, and
potentially, its potential. That is what defines the interaction.

In general relativity, the motion of particles will be described by

ẍµ + Γµαβ ẋ
α ẋβ = 0 (7.1)

and this will occur in a four-dimensional space-time – but that doesn’t con-
cern us for now. The point of the above is that it lacks a potential, and can
be connected in a natural way to the metric.

7.1 Introduction in Two Dimensions

We will start with some basic examples in two-dimensions for concreteness.
Here we will always begin in a Cartesian-parametrized plane, with basis
vectors x̂ and ŷ.

7.1.1 Rotation

To begin, consider a simple rotation of the usual coordinate axes through
an angle θ (counterclockwise) as shown in Figure 7.1.

From the figure, we can easily relate the coordinates w.r.t. the new axes
(x̄ and ȳ) to coordinates w.r.t. the “usual” axes (x and y) – define ` =
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Figure 7.1: Two sets of axes, rotated through an angle θ with respect to
each other.

√
x2 + y2, then the invariance of length allows us to write

x̄ = ` cos(ψ − θ) = ` cosψ cos θ + ` sinψ sin θ = x cos θ + y sin θ
ȳ = ` sin(ψ − θ) = ` sinψ cos θ − ` cosψ sin θ = y cos θ − x sin θ,

(7.2)

which can be written in matrix form as:(
x̄
ȳ

)
=
(

cos θ sin θ
− sin θ cos θ

)
︸ ︷︷ ︸

≡R=̇Rα
β

(
x
y

)
. (7.3)

If we think of infinitesimal displacements centered at the origin, then we
would write dx̄α = Rαβ dx

β. Notice that in this case, as a matrix, the
inverse of R is

R−1=̇
(

cos θ − sin θ
sin θ cos θ

)
(7.4)

and this is also equal to the transpose of R, a defining property of “ro-
tation” or “orthogonal” matrices: R−1 = RT , in this case coming from
the observation that one coordinate system’s clockwise rotation is another’s
counter-clockwise, and symmetry properties of the trigonometric functions.
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Scalar

This one is easy – a scalar “does not” transform under coordinate transfor-
mations – if we have a function φ(x, y) in the first coordinate system, then
we have:

φ̄(x̄, ȳ) = φ(x(x̄, ȳ), y(x̄, ȳ)) (7.5)

so that operationally, all we do is replace the x and y appearing in the
definition of φ with the relation x = x̄ cos θ−ȳ sin θ and y = x̄ sin θ+ȳ cos θ.

Vector (Contravariant)

With the fabulous success and ease of scalar transformations, we are led to
a natural definition for an object that transforms as a vector. If we write a
generic vector in the original coordinate system:

f = fx(x, y) x̂ + fy(x, y) ŷ, (7.6)

then we’d like the transformation to be defined as:

f̄ = f̄x(x̄, ȳ) x̄ + f̄y(x̄, ȳ) ȳ = fx(x, y) x̂ + fy(x, y) ŷ, (7.7)

i.e. identical to the scalar case, but with the non-trivial involvement of the
basis vectors.

From Figure 7.1, we can easily see how to write the basis vector x̄ and ȳ in
terms of x̂ and ŷ:

x̄ = cos θ x̂ + sin θ ŷ

ȳ = − sin θ x̂ + cos θ ŷ,
(7.8)

and using this, we can write f̄ in terms of the original basis vectors, the
elements in front of these will then define fx and fy according to our target.

f̄ =
(
f̄x cos θ − f̄y sin θ

)
x̂ +

(
f̄x sin θ + f̄y cos θ

)
ŷ, (7.9)

so that we learn (slash demand) that

fx = f̄x cos θ − f̄y sin θ
fy = f̄x sin θ + f̄y cos θ,

(7.10)

or, inverting, we have, now in matrix form:(
f̄x

f̄y

)
=
(

cos θ sin θ
− sin θ cos θ

)(
fx

fy

)
. (7.11)
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Notice that the “components” can be written as f̄α = Rαβ f
β from the

above, and this leads to the usual statement that “a (contravariant) vector
transforms ‘like’ the coordinates themselves.” (more appropriately, like the
coordinate differentials, which are actual vectors – recall dx̄α = Rαβ dx

β

from above).

The rotation matrix and transformation is just one example, and the form
is telling – notice that (somewhat sloppily)

dx̄α = Rαβ dx
β −→ dx̄α

dxβ
= Rαβ (7.12)

and so it is tempting to generalize the contravariant vector transformation
law to include an arbitrary relation between “new” and “old” coordinates:

f̄α =
dx̄α

dxβ
fβ, (7.13)

precisely what we defined for a contravariant vector originally.

7.1.2 Non-Orthogonal Axes

We will stick with linear transformations for a moment, but now allow the
axes to be skewed – this will allow us to distinguish between the above con-
travariant transformation law and the covariant (one-form) transformation
law.

Consider the two coordinate systems shown in Figure 7.2 – from the figure,
we can write the relation for dx̄α in terms of dxα:(

dx
dy

)
=
(

1 cos θ
0 sin θ

) (
dx̄
dȳ

)
(7.14)

or, we can write in the more standard form (inverting the above):(
dx̄
dȳ

)
=
(

1 − cot θ
0 1

sin θ

)
︸ ︷︷ ︸

≡T=̇Tα
β

(
dx
dy

)
, (7.15)

so that dx̄α = Tαβ dx
β and the matrix T is the inverse of the matrix in (7.14).
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ŷ ȳ

x̂, x̄
θ

dȳdy

dx̄

dx

Figure 7.2: Original, orthogonal Cartesian axes, and a skewed set with
coordinate differential shown (parallel projection is used since differentials
are contravariant).

Let us first check the contravariant form dx = dx x̂ + dy ŷ transforms ap-
propriately. We need the basis vectors in the skewed coordinate system –
from the figure, these are x̄ = x̂ and ȳ = cos θ x̂ + sin θ ŷ, then

dx̄ = dx̄ x̄ + dȳ ȳ

=(dx− cot θ dy) x̂ +
dy

sin θ
(cos θ x̂ + sin θ ŷ)

= dx x̂ + dy ŷ

(7.16)

as expected.

Recall that we developed the metric for this type of situation previously –
if we take the scalar length dx2 + dy2, and write it in terms of the dx̄ and
dȳ infinitesimals, then

dx2 + dy2 = dx̄2 + dȳ2 2 dx̄ dȳ cos θ=̇
(
dx̄ dȳ

)( 1 cos θ
cos θ 1

)
︸ ︷︷ ︸

≡ḡµν

(
dx̄
dȳ

)
,

(7.17)
defining the metric. We have the relation dxαgαβ dx

β = dx̄α ḡαβ dx̄
β, which

tells us how the metric itself transforms. From the definition of the trans-
formation, dx̄α = Tαβ dx

β, we have dx̄α

dxβ = Tαβ as usual, but we can also
write the inverse transformation, making use of the inverse of the matrix T
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in (7.14). Letting T̃αβ≡̇T−1,

dxα = T̃αβ dx̄
β −→ dxα

dx̄β
= T̃αβ. (7.18)

Now going back to the invariant,

dx̄α ḡαβ dx̄
β = (Tαγ dx

γ) ḡαβ (T βρ dx
ρ). (7.19)

For this to expression to equal dxαgαβ dxβ, we must have

ḡαβ = T̃ σα gσδ T̃
δ
β, (7.20)

which we can put in as a check:

dx̄α ḡαβ dx̄
β = (Tαγ dx

γ) ḡαβ (T βρ dx
ρ)

= (Tαγ dx
γ)
(
T̃ σα gσδ T̃

δ
β

)
(T βρ dx

ρ)

= δσγ δ
δ
ρ gσδ dx

γ dxρ

= dxσ gσδ dx
δ.

(7.21)

The metric transformation law (7.20) is different from that of a vector – first
of all, there are two indices, but more important, rather than transforming
with Tαβ, the covariant indices transform with the inverse of the transfor-
mation. This type of transformation is not obvious under rotations since
rotations leave the metric itself invariant (RT g R = g), and we don’t notice
the transformation of the metric.

Covariant “vector” Transformation

If we generalize the above covariant transformation to non-linear coordinate
relations, we define covariant vector transformation as:

f̄α =
dxβ

dx̄α
fβ. (7.22)

For a second rank covariant tensor, like the metric gµν , we just introduce
a copy of the transformation for each index (the same is true for the con-
travariant transformation law):

ḡµν =
dxα

dx̄µ
dxβ

dx̄ν
gαβ (7.23)
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Now the question becomes: For contravariant vectors, the model was dxα,
what is the model covariant vector? The answer is, “the gradient”. Consider
a scalar φ(x, y) – we can write its partial derivaties w.r.t. the coordinates
as:

∂φ(x, y)
∂xα

≡ φ,α, (7.24)

and ask how this transforms under any coordinate transformation – the an-
swer is provided by the chain rule. We have the usual scalar transformation
φ̄(x̄, ȳ) = φ(x(x̄, ȳ), y(x̄, ȳ)), so

φ̄,α =
∂φ̄

∂x̄α
=

∂φ

∂xβ
∂xβ

∂x̄α
=
∂xβ

∂x̄α
φ,β, (7.25)

precisely the rule for covariant vector transformation.

How does this compare with our usual ∇φ = ∂φ
∂x x̂+ ∂φ

∂y ŷ? Almost automat-
ically, we realize that this is a contravariant vector – it is written in terms
of the basis vector components just as fα was, so we expect to find that ∇φ
is shorthand for φ α

, rather than φ,α. There are deep distinctions between
covariant and contravariant tensors, and we have not addressed them in full
abstraction here – for our purposes, there is a one-to-one map between the
two provided by the metric, and that makes them effectively equivalent. It
is important, in some settings, to keep track of the fundamental nature of an
object, covariant or contravariant (as is the case with, for example, momen-
tum), but for now, it suffices to define the relation between contravariant
and covariant objects via the metric: For a contravariant vector fα,

fα ≡ gαβ fβ. (7.26)

We further define gαβ to be the contravariant form of the metric, its numer-
ical matrix inverse: gαβ gβγ = δαγ .

Now we can see that:
φ̄ α
, = ḡαβ φ̄,β (7.27)

and for our skew-axis transformation, we have:

ḡαβ=̇
(

1 cos θ
cos θ 1

)
ḡαβ =̇

( 1
sin2 θ

− cos θ
sin2 θ

− cos θ
sin2 θ

1
sin2 θ

)
(7.28)

so that

ḡαβ φ̄,β=̇
1

sin θ

(
1

sin θ
∂φ̄

∂x̄
− cos θ

sin θ
∂φ̄

∂ȳ

)
x̄ +

1
sin θ

(
−cos θ

sin θ
∂φ̄

∂x̄
+

1
sin θ

∂φ̄

∂ȳ

)
ȳ,

(7.29)
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and
∂φ̄

∂x̄
=
∂φ

∂x

∂x

∂x̄
+
∂φ

∂y

∂y

∂x̄
=
∂φ

∂x

∂φ̄

∂ȳ
=
∂φ

∂x

∂x

∂ȳ
+
∂φ

∂y

∂y

∂ȳ
=
∂φ

∂x
cos θ +

∂φ

∂y
sin θ,

(7.30)

which we can input into (7.29):

ḡαβφ̄,β=̇
1

sin θ

(
1

sin θ
∂φ

∂x
− ∂φ

∂x

cos2 θ

sin θ
− ∂φ

∂y
cos θ

)
x̄ +

1
sin θ

(
−cos θ

sin θ
∂φ

∂x
+

cos θ
sin θ

∂φ

∂x
+
∂φ

∂y

)
ȳ

=
(
∂φ

∂x
− cot θ

∂φ

∂y

)
x̄ +

1
sin θ

∂φ

∂y
ȳ,

(7.31)
or, finally, replacing the unit vectors with the original set

ḡαβ φ̄,β=̇
(
∂φ

∂x
− cot θ

∂φ

∂y

)
x̄ +

1
sin θ

∂φ

∂y
ȳ

=
∂φ

∂x
x̂ +

∂φ

∂y
ŷ

(7.32)

and we see that this is the correct expression for a contravariant vector:
∇̄φ̄ = ∇φ.

7.2 Transformation and Basis

We have discussed the transformation laws for our various tensors, but let’s
look in more detail: consider a vector written in the usual Cartesian coor-
dinates

xα ≡̇x =̇x x̂+ y ŷ + z ẑ. (7.33)

Our aim is to transform this to a new set of coordinates (r, θ, φ) related to
these in some manner. The transformation laws for tensors involve objects
like ∂x′α

∂xβ , so we must be able to form xα(x′) and vice-versa (a statement
about the non-singular nature of the transformation)

x1(r, θ, φ) = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ

(7.34)

Just by the chain rule, then, we have

dxα =
∂xα

∂x′β
dx′β. (7.35)
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In matrix form

dxα =
∂xα

∂x′β
dx′β

=̇

 sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 dr
dθ
dφ


= dr er + dθ eθ + dφ eφ.

(7.36)

This last line is important – keep in mind that matrix-vector multiplication
can be viewed as Aij xj = [Akxk] where the right-hand side means “multiply
the kth column of A by xk. So the above tells us what we mean by the vectors
er, eθ, eφ. These are “basis vectors” as usual. They look a little funny sitting
here, we are used to a slightly different type of basis vector. If you consult
Griffiths, you will find that his spherical basis vectors are written, in terms
of ours, as

êr = er êθ =
1
r
eθ êφ =

1
r sin θ

eφ (7.37)

i.e. they are normalized.

So far, so good – if we want to represent dx = dx1 x̂+dx2 ŷ+dx3 ẑ in terms
of (r, θ, φ) and (êr, êθ, êφ), we know how to do it. Now the question is, if we
had a vector fα on the Cartesian side, so that f = f1 x̂ + f2 ŷ + f3 ẑ, what
is this vector written in terms of the spherical coordinate system and basis?
Well, we know how to write the Cartesian basis in terms of the spherical
one, and we get:

f ′ =
((
f1 cosφ+ f2 sinφ

)
sin θ + f3 cos θ

)
êr

+
(
f1 cosφ cos θ + f2 cos θ sinφ− f3 sin θ

)
êθ

+
(
f2 cosφ− f1 sinφ

)
êφ

(7.38)

and we can further write this in terms of the more natural basis (er, eθ, eφ):

f ′ =
(
f3 cos θ +

(
f1 cosφ+ f2 sinφ

)
sin θ

)
er

+
1
r

(
f1 cosφ cos θ + f2 cos θ sinφ− f3 sin θ

)
eθ

+
1

r sin θ
(
f2 cosφ− f1 sinφ

)
eφ,

(7.39)
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which leads us to the point of all this – we can call the elements of the above:

f ′α=̇

 f3 cos θ +
(
f1 cosφ+ f2 sinφ

)
sin θ

1
r

(
f1 cosφ cos θ + f2 cos θ sinφ− f3 sin θ

)
1

r sin θ

(
f2 cosφ− f1 sinφ

)


=̇

 sin θ cosφ sin θ sinφ cos θ
1
r cos θ cosφ 1

r cos θ sinφ −1
r sin θ

− 1
r sin θ sinφ 1

r sin θ cosφ 0

 f1

f2

f3

 .

(7.40)

Comparing this to (7.36) (invert the matrix you find there to verify that
∂xα

∂x′β
∂x′β

∂xγ = δαγ ) we see that

f ′α =
∂x′α

∂xβ
fβ. (7.41)

7.3 Derivatives

So, we see that we might write: f = fβ eβ as a representation of the vector
in a basis (or “frame”). The “gradient” of f is

∂f
∂xα

=
∂fβ

∂xα
eβ + fβ

∂eβ
∂xα

(7.42)

which is the usual sort of statement: we must take the derivatives of the
function and the basis if it depends on coordinates.

Let us be clear, and I’ll do this on the tensor side entirely, since I don’t like
mixing it up. Think of a contravariant vector transformation:

f ′α =
∂x′α

∂xβ
fβ, (7.43)

and take ∂
∂x′γ of this, then by the chain rule:

∂f ′α

∂x′γ
=
∂x′α

∂xβ

(
∂xσ

∂x′γ
∂fβ

∂xσ

)
+

∂2x′α

∂xβ∂xρ
∂xρ

∂x′γ
fβ. (7.44)

Now consider the transformation rule for a second rank, mixed tensor:

f ′αβ =
∂x′α

∂xγ
∂xσ

∂x′β
fγσ (7.45)

so comparing to (7.44), we see that the second term is the problem one!

That is to say, the object fα,γ is not a tensor. This must be fixed immediately.
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7.4 What is a Tensorial Derivative?

The usual definition of a derivative is in terms of a limit like

f ′(x) = lim
δx→0

f(x+ δx)− f(x)
δx

. (7.46)

Suppose we expand a tensor fα(x+ δx) about the point P (with coordinate
x), this is just Taylor’s theorem

fα(x+ δx) = fα(x) + δxγ fα,γ +O(δx2) (7.47)

and we would say that the (non-tensorial) change of the vector is given by
∆fα ≡ fα(x+ δx)− f(x) = δxγ fα,γ .

Instead of using this ∆fα, which, since it involves the “usual” derivative
cannot be a tensor, we introduce a fudge factor. So we will compare fα(x+
δx) with fα(x) + δfα(x) – that is, we will define the “covariant” derivative
in terms of

fα;γ(x) ≡ lim
δx→0

fα(x+ δx)−(fα(x) + δfα(x))
δxγ

. (7.48)

What form should this “extra bit” δfα(x) take? Well, I suggest that in the
limiting case that fα(x) = 0, it should be zero, and it should also tend to
zero with δx→ 0, i.e. if we don’t move from the point P , we should recover
the usual derivative. This suggests an object of the form ∼ δxρ f τ , and we
still need a contravariant index to form δfα – so we propose:

δfα ≡ −Cαρτ δxρ f τ (7.49)

(the negative sign is convention) where Cαρτ is just some triply-indexed
object that we don’t know anything about yet. Our new derivative, the
“covariant derivative” will be written

fα;γ(x) ≡ lim
δx→0

fα(x+ δx)−(fα(x) + δfα(x))
δxγ

= lim
δx→0

fα(x+ δx)− fα(x)
δxγ

+ Cαγτ f
τ

= fα,γ(x) + Cαγτ (x) f τ (x)

(7.50)

But I haven’t really done anything, just suggested that we move a vector
from point to point in some Cαβγ-dependent way rather than the usual trans-
port operator (the derivative). The whole motivation for doing this was to
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ensure that our notion of derivative was tensorial. This imposes a constraint
on Cαβγ (which is arbitrary right now) – let’s work it out. Using (7.44)

f ′α;γ =
∂x′α

∂xβ
∂xσ

∂x′γ
∂fβ

∂xσ
+

∂2x′α

∂xβ ∂xρ
∂xρ

∂x′γ
fβ + C ′αβγ

∂x′β

∂xσ
fσ

=
∂x′α

∂xβ
∂xσ

∂x′γ

(
fβ;σ − fρCβσρ

)
+

∂2x′α

∂xβ ∂xρ
∂xρ

∂x′γ
fβ + C ′αβγ

∂x′β

∂xσ
fσ,

(7.51)
the term in parenthesis comes from noting that fα,γ = fα;γ−Cαβγ fβ. Collect-
ing everything that is “wrong” in the above, we can define the transformation
rule for Cαβγ

f ′α;γ =
∂x′α

∂xβ
∂xσ

∂x′γ
fβ;σ +

(
−∂x

′α

∂xβ
∂xτ

∂x′γ
Cβτρ +

∂2x′α

∂xρ ∂xτ
∂xτ

∂x′γ
+ C ′αβγ

∂x′β

∂xρ

)
fρ.

(7.52)
In order to kill the offending term in parentheses, we define

C ′ατγ =
∂xλ

∂x′τ
∂x′α

∂xρ
∂xσ

∂x′γ
Cρσλ −

∂2x′α

∂xλ ∂xρ
∂xρ

∂x′γ
∂xλ

∂x′τ
(7.53)

and from this we conclude that Cαβγ is itself not a tensor. Anything that
transforms according to (7.53) is called a “connection”. What we’ve done
in (7.50) is add two things, neither of which is a tensor, in a sum that
produces a tensor. Effectively, the non-tensor parts of the two terms kill
each other (by construction, of course, that’s what gave us (7.53)), we just
needed a little extra freedom in our definition of derivative. For better or
worse, we have it! This fα;β is called the covariant derivative, and plays the
role, in tensor equations, of the usual fα,β.
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