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We have our fancy new derivative, but what to do with it? In particular,
how can we interpret “motion”, the usual information of the derivative,
in terms of this new construction? We will see, using the simplest possible
curved space, that the connection provides the connection (so to speak). The
new element in derivatives is the notion that the basis vectors themselves
depend on position. This is not so surprising, we have seen that in the
past (spherical, cylindrical coordinates with their position-dependent basis
vectors) – what we will make explicit now is the role of Γαβγ in keeping
track of this change. The derivative of a vector field along a curve is made
up of two parts: Changes to the vector field itself, and changes in the basis
vectors.

8.1 Parallel Transport

Consider a vector fα(x) defined on the surface of a sphere – the coordinates
there are defined to be θ, φ. Suppose that we have in mind a definite curve
of some sort, parametrized by τ – a curve defined by (θ(τ), φ(τ)) ≡ xα(τ).

From our three-dimensional point of view, the tangent to the curve is given
by ẋ(τ). If we have a vector field fα(x) defined on the sphere, then we can
define fα(τ) using the curve definition. For concreteness, let

f̃ = f̃θ(θ, φ) êθ + f̃φ(θ, φ) êφ (8.1)

in the natural (see Griffiths) orthonormal basis defined on the surface of
the sphere. But we are not used to this basis, we are used to our so-called
coordinate basis, which is not normalized. This is only a point of notation,
but the idea of switching to the coordinate basis (and/or from it to the
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(θ(τ),φ(τ))

A

B

Figure 8.1: Going from point A to point B along a curve parametrized by
τ defined on the surface of a sphere.

orthonormal basis) comes up a lot, depending on context. To change basis,
recall our relation from last time:

êr = er êθ =
1
r
eθ êφ =

1
r sin θ

eφ (8.2)

at which point the vector can be written

f̃ =
1
r
f̃θ(θ, φ) eθ + f̃φ(θ, φ)

eφ
r sin θ

≡ fθ eθ + fφ eφ,
(8.3)

with fθ = 1
r f̃

θ and fφ = f̃φ r−1 sin−1 θ. The above is what we normally
have in mind when we write fα.

And now we ask: if we go along the curve a distance dτ , how does the vector
fα change?

df |C = fθ,α ẋ
α dτ eθ + fθ

(
∂eθ
∂θ

θ̇ +
∂eθ
∂φ

φ̇

)
+ fφ,α ẋ

α dτ eφ + fφ
(
∂eφ
∂θ

θ̇ +
∂eφ
∂φ

φ̇

)
.

(8.4)

To evaluate the above, we need the derivatives of the basis vectors – they
are (using our inversion formula or other)

∂eθ
∂θ

= −r er
∂eθ
∂φ

= cot θ eφ

∂eφ
∂θ

= cot θ eφ
∂eφ
∂φ

= − sin θ (cos θ eθ + sin θ er).
(8.5)
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If we are on the surface of the sphere, there is no such thing as er – while
it exists in three dimensions, there is no normal to the sphere in two. So
restricting our attention, we have

df |C =
(
fθ,α ẋ

α − fφ sin θ cosφ φ̇
)

eθ dτ

+
(
fφ,α ẋ

α + cot θ (fθ φ̇+ fφ θ̇)
)

eφ dτ.
(8.6)

This could be written

df |C=̇
(
fθ,α ẋ

α

fφ,α ẋα

)
dτ +

(
− sin θ cos θ fφ φ̇
cot θ (fθ φ̇+ fφ θ̇)

)
dτ, (8.7)

and the second term has the form Cαβγ ẋ
β fγ if we define

Cθφφ = − cos θ sin θ Cφθφ = Cφφθ = cot θ (all other components are zero).
(8.8)

Then we can express the above as:

dfα|C =
(
fα,γ ẋ

γ + Cαβγ ẋ
β fγ

)
dτ = ẋγ fα;γ dτ, (8.9)

so we see that we might well call dfα

dτ |C “the derivative along the curve
parametrized by τ”. This object is denoted

dfα

dτ

∣∣∣∣
C

= ẋγ fα;γ ≡
Dfα

Dτ
. (8.10)

Let’s take a breather – what have we done? Well, I have shown that tensors
have a notion of distance along a curve – the complication that leads to the
appearance of Cαβγ can either be viewed as the changing of basis vectors, or
the lack of subtraction except at a point. These two views can both be used
to describe the covariant derivative. In one case, we are explicitly inserting
the basis vectors and making sure to take the derivative w.r.t. both the
elements of fα and the basis vectors. In the other, we are using the “fudge
factor” to pick up the slack in the non-tensorial (ordinary) derivative.

Either way you like, we have a new notion of the change of a vector along
a curve. Incidentally, in Cartesian coordinates, the equivalent object would
look like fα,γ ẋ

γ , and this highlights one common procedure we will en-
counter in a lot of GR, that of “minimal substitution”. General relativity
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is a coordinate-independent theory, the best way to make true statements,
then, is to make tensor statements. There is a lack of uniqueness that
plagues the “non-tensor statements go to tensor statements” algorithm, and
minimal replacement is (sometimes) a way around this. It certainly has
worked out here – we take the non-tensor fα,γ and replace it with the tensor
fα;γ to get the tensor form of “ḟα”.

But wait a minute – I haven’t proved anything here, just suggested that we
box up the terms that aren’t familiar from (8.7) and defined a connection
that has the correct form. I am entirely within my rights to do this, but I
must show you that my construction of the connection has the appropriate
transformation properties. I will bypass this entirely! You will see soon
enough that the above definition (8.8) is in fact a connection, and a natural
one given the surface of a sphere (“natural”?!).

Now, as with almost all studies of new derivative operators, we ask the very
important question – what is a constant? In Cartesian coordinates, a vector
field is constant if its components are . . . constant. In the general case, we
must demand constancy w.r.t. the covariant derivative, i.e. we take a vector
fα(x) and require

Dfα

Dτ
= ẋγ fα;γ = 0. (8.11)

Depending on our space, we can have a “constant” vector fα that does not
have constant entries – after all

ẋγ fα;γ = ẋγ fα,γ + Cαβγ ẋ
γ fβ = 0→ dfα

dτ
= −Cαβγ ẋγ fβ. (8.12)

A vector satisfying this constancy condition is said to be “parallel trans-
ported around the curve defined by xα(τ) with tangent vector ẋα(τ)”. Re-
member, there is a curve lurking in the background, otherwise, we have no
τ .

The flip side of this discussion is that we can make a vector constant – using
the above equation, we have a first order ODE for fα(x) – we could solve it
given the values of fα(P ) at a point P = x(0). This allows us to explicitly
construct constant vectors.

What properties do we expect for parallel transport? From its name, and
the idea that the vectors fα with Dfα

Dτ = 0 are somehow “constant”, we
impose the condition that two vectors that are being parallel transported
around the same curve C remain at the same angle w.r.t. each other.
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φ

φ

Figure 8.2: “angle conservation” under parallel transport of two vectors.

Same angle w.r.t. each other? We haven’t even defined the angle between
vectors, but it is what you expect – the length of a vector is given by
f2 = fαgαβ f

β, and the angle between two vectors is similarly defined to be:

cosφ =
√
pγ qγ√

pα pα
√
qβ qβ

. (8.13)

So take two vectors parallel-transported around a curve C, we have Dpα

Dτ =
Dqα

Dτ = 0, then the requirement that the angle remain constant along the
curve is summed up in the following:

ẋγ
(
gαβ p

α qβ
)

;γ
= 0. (8.14)

The covariant derivative satisfies all the usual product rules, so we can ex-
pand out the left-hand side:

ẋγ
(
gαβ;γ p

α qβ + gαβ p
α
;γ q

β + gαβ p
α qβ;γ

)
= 0 (8.15)

but the two terms involving the derivatives of pα and qα are zero by assump-
tion, so we must have ẋγ gαβ;γ = 0. If this is to be true for any curve xα(τ)
and vectors pα, qα, then we must have gαβ;γ = 0.

Well, as you will see in your homework, this leads to an interesting require-
ment:

gαβ;γ = 0→ Cµαβ =
1
2
gµγ (gγβ,α + gγα,β − gαβ,γ) ≡ Γµαβ. (8.16)

That’s precisely what we defined to be Γµαβ during our discussion of Keple-
rian orbits.
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8.2 Geodesics

In fact, the whole story becomes eerily similar to our second meeting – there
is a special class of curves, ones whose tangent vector is parallel-transported
along the curve – that is

ẋα;γ ẋ
γ = 0. (8.17)

We will have more to say about this special class of curve later, but they do
have the property of extremizing distance between points, that is, they are
in a generalized sense, “straight lines”.

Let me write out the requirement explicitly:

ẋα;γ ẋ
γ =

dẋα

dτ
+ Γαβγ ẋ

β ẋγ = 0 (8.18)

which we sometimes write as

ẍν gαν + Γαβγ ẋβ ẋγ = 0 (8.19)

In three dimensional space with Cartesian coordinates, this reduces to ẍµ =
0, or the familiar lines of force-free motion: xα(t) = Aα t + Bα for con-
stants Aα and Bα. The connection coefficients for a constant metric have
no derivatives, hence the simplification. We can use a non-trivial coordi-
nate system (i.e. one with a non-vanishing connection) – take cylindrical
coordinates: xµ=̇(s, φ, z) with metric and connection:

gµν=̇

 1 0 0
0 s2 0
0 0 1

 Γsφφ = −s Γφsφ = Γφφs =
1
s
, (8.20)

with all other elements of Γαβγ = 0. Then the equations for geodesic motion
coming from (8.18) are:

s̈ = s φ̇2

φ̈ = −2 φ̇ ṡ
s

z̈ = 0.

(8.21)

The line solutions to this are less obvious than in the Cartesian case, z(t) =
A t + B is obvious, and decoupled from the planar portion. As a quick
check, it is clear that φ = φ0 (a constant angle) leads to s̈ = 0, so straight
line “radial” motion. To find the most general solution, we can take the
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Cartesian case: x(t) = F t+B, y(t) = P t+Q and construct s =
√
x2 + y2

and φ = tan−1(y/x), leading to:

s(t) =
√

(F t+G)2 + (P t+Q)2 φ(t) = tan−1

(
P t+Q

F t+G

)
, (8.22)

which, combined with z(t) = A t+B does indeed solve (8.21).
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