Problem Set 1

Classical Mechanics II Physics 411

Due on September 7th 2007

Problem 1.1

For a matrix \mathbb{A} with entries A^{ij} and a vector \mathbf{x} with entries x_k , write the matrix-vector products $\mathbb{A}\mathbf{x}$ and $\mathbf{x}^T\mathbb{A}$ in indexed notation.

Problem 1.2

Start with the "usual" Cartesian Lagrangian for a central potential,

$$L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right) - U\left(\sqrt{x^2 + y^2 + z^2}\right)$$
(2)

and transform the coordinates (and velocities) directly (no metric allowed) to find the Lagrangian associated with a central potential in cylindrical coordinates, with $x^1 = s$, $x^2 = \phi$, $x^3 = z$. From the Lagrangian itself (most notably, its kinetic term), write the metric associated with cylindrical coordinates.

Problem 1.3

a. Given a second rank tensor $T_{\mu\nu}$, often viewed as an $N \times N$ matrix (for a space of dimension N), show by explicit construction that one can always decompose $T_{\mu\nu}$ into a symmetric $(S_{\mu\nu} = S_{\nu\mu})$ and antisymmetric part $(A_{\mu\nu} = -A_{\nu\mu})$ via $T_{\mu\nu} = S_{\mu\nu} + A_{\mu\nu}$. The symmetric portion is often denoted $T_{(\mu\nu)}$, and the antisymmetric $T_{[\mu\nu]}$.

$$\mathbb{A} \doteq \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix}. \tag{1}$$

¹So that in two dimensions, for example,

b. In terms of the decomposition, $T_{\mu\nu} = S_{\mu\nu} + A_{\mu\nu}$, evaluate the sums

$$T_{\mu\nu} Q^{\mu\nu} \quad T_{\mu\nu} P^{\mu\nu} \tag{3}$$

with $Q^{\mu\nu}$ symmetric, and $P^{\mu\nu}$ antisymmetric.

c. Using the decomposition above, show that, as stated in class:

$$\dot{x}^{\nu} \dot{x}^{\gamma} \left(\frac{\partial g_{\alpha\nu}}{\partial x^{\gamma}} - \frac{1}{2} \frac{\partial g_{\gamma\nu}}{\partial x^{\alpha}} \right) = \frac{1}{2} \dot{x}^{\nu} \dot{x}^{\gamma} \left(\frac{\partial g_{\alpha\nu}}{\partial x^{\gamma}} + \frac{\partial g_{\alpha\gamma}}{\partial x^{\nu}} - \frac{\partial g_{\gamma\nu}}{\partial x^{\alpha}} \right)$$
(4)

(note that $\dot{x}^{\nu} \dot{x}^{\gamma}$ plays the role of a symmetric second rank tensor).

Problem 1.4

a. For the metric $g_{\mu\nu}$ in spherical coordinates, and coordinates $x^1 = r$, $x^2 = \theta$, $x^3 = \phi$, find the *r* component of the equation of motion (i.e. $\alpha = 1$)

$$mg_{\alpha\nu}\ddot{x}^{\nu} + m\dot{x}^{\nu}\dot{x}^{\gamma}\frac{1}{2}\left(\frac{\partial g_{\alpha\nu}}{\partial x^{\gamma}} + \frac{\partial g_{\alpha\gamma}}{\partial x^{\nu}} - \frac{\partial g_{\gamma\nu}}{\partial x^{\alpha}}\right) = -\frac{\partial U}{\partial x^{\alpha}}.$$
 (5)

b. Starting from the Lagrangian in spherical coordinates, calculate the r equation of motion directly from

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{r}} - \frac{\partial L}{\partial r} = 0 \tag{6}$$

and verify that you get the same result.