Problem Set 1

Classical Mechanics II
Physics 411

Due on September 7th 2007

Problem 1.1

For a matrix \mathbb{A} with entries $A^{i j 1}$ and a vector \mathbf{x} with entries x_{k}, write the matrix-vector products $\mathbb{A} \mathbf{x}$ and $\mathbf{x}^{T} \mathbb{A}$ in indexed notation.

Problem 1.2

Start with the "usual" Cartesian Lagrangian for a central potential,

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-U\left(\sqrt{x^{2}+y^{2}+z^{2}}\right) \tag{2}
\end{equation*}
$$

and transform the coordinates (and velocities) directly (no metric allowed) to find the Lagrangian associated with a central potential in cylindrical coordinates, with $x^{1}=s, x^{2}=\phi, x^{3}=z$. From the Lagrangian itself (most notably, its kinetic term), write the metric associated with cylindrical coordinates.

Problem 1.3

a. Given a second rank tensor $T_{\mu \nu}$, often viewed as an $N \times N$ matrix (for a space of dimension N), show by explicit construction that one can always decompose $T_{\mu \nu}$ into a symmetric ($S_{\mu \nu}=S_{\nu \mu}$) and antisymmetric part $\left(A_{\mu \nu}=-A_{\nu \mu}\right)$ via $T_{\mu \nu}=S_{\mu \nu}+A_{\mu \nu}$. The symmetric portion is often denoted $T_{(\mu \nu)}$, and the antisymmetric $T_{[\mu \nu]}$.

[^0]b. In terms of the decomposition, $T_{\mu \nu}=S_{\mu \nu}+A_{\mu \nu}$, evaluate the sums
\[

$$
\begin{equation*}
T_{\mu \nu} Q^{\mu \nu} \quad T_{\mu \nu} P^{\mu \nu} \tag{3}
\end{equation*}
$$

\]

with $Q^{\mu \nu}$ symmetric, and $P^{\mu \nu}$ antisymmetric.
c. Using the decomposition above, show that, as stated in class:

$$
\begin{equation*}
\dot{x}^{\nu} \dot{x}^{\gamma}\left(\frac{\partial g_{\alpha \nu}}{\partial x^{\gamma}}-\frac{1}{2} \frac{\partial g_{\gamma \nu}}{\partial x^{\alpha}}\right)=\frac{1}{2} \dot{x}^{\nu} \dot{x}^{\gamma}\left(\frac{\partial g_{\alpha \nu}}{\partial x^{\gamma}}+\frac{\partial g_{\alpha \gamma}}{\partial x^{\nu}}-\frac{\partial g_{\gamma \nu}}{\partial x^{\alpha}}\right) \tag{4}
\end{equation*}
$$

(note that $\dot{x}^{\nu} \dot{x}^{\gamma}$ plays the role of a symmetric second rank tensor).

Problem 1.4

a. For the metric $g_{\mu \nu}$ in spherical coordinates, and coordinates $x^{1}=r$, $x^{2}=\theta, x^{3}=\phi$, find the r component of the equation of motion (i.e. $\alpha=1$)

$$
\begin{equation*}
m g_{\alpha \nu} \ddot{x}^{\nu}+m \dot{x}^{\nu} \dot{x}^{\gamma} \frac{1}{2}\left(\frac{\partial g_{\alpha \nu}}{\partial x^{\gamma}}+\frac{\partial g_{\alpha \gamma}}{\partial x^{\nu}}-\frac{\partial g_{\gamma \nu}}{\partial x^{\alpha}}\right)=-\frac{\partial U}{\partial x^{\alpha}} . \tag{5}
\end{equation*}
$$

b. Starting from the Lagrangian in spherical coordinates, calculate the r equation of motion directly from

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{r}}-\frac{\partial L}{\partial r}=0 \tag{6}
\end{equation*}
$$

and verify that you get the same result.

[^0]: ${ }^{1}$ So that in two dimensions, for example,

 $$
 \mathbb{A} \doteq\left(\begin{array}{ll}
 A^{11} & A^{12} \tag{1}\\
 A^{21} & A^{22}
 \end{array}\right) .
 $$

