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Problem Set 2

Classical Mechanics IT
Physics 411

Due on September 14th 2007

Problem 2.1

We have been focusing on bound orbits, but one can also approach a massive
object directly along a line, this is radial infall.

a.  From our radial equation for the ¢-parametrized p(¢) = 1/r(¢) curve,
we had, for arbitrary U(p):
JZ dU(p)
_z - ___\F/ 1
= (0)+ o) =~ 2 (1)

can this equation be used to develop the ODE appropriate for radial infall
with the Newtonian point potential? (i.e. A particle falls inward from r(t =
0) = R with 7(t = —00) = 0 towards a spherically symmetric central body
with mass M sitting at » = 0.) If not, explain why, if so, prepare to solve
the relevant ODE for r(¢) in the next part.

b. Solve the radial infall problem with initial conditions from part a. —
i.e. find r(t) appropriate for a particle of mass m falling towards r = 0 along
a straight line — assume a spherically symmetric massive body is located at
r =0 with mass M.

Problem 2.2

Inspired by conservation of energy H = E (Hamiltonian is a constant), and
the Lagrangian for orbital motion in the 6 = %77 plane:

L= %(ﬂ +72%6) — U(r) 2)

with U(r) = —% as usual, one can reinterpret orbital motion as one-
dimensional motion in r (the Hamiltonian involves only the r coordinate
and the constant associated with angular momentum, J,).
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a. Write the effective potential energy (i.e. the potential energy for the
one-dimensional problem) in this setting. Make a sketch of the effective
potential, label its behavior for r ~ 0, r ~ co. On your sketch, identify any
zero-crossings and minima (both location r and value Uy, ).

b. Solve for r(t) when E = Uy, from part a. What does the full
two-dimensional solution look like in the x — y plane for this case?

Problem 2.3

a. For an ellipse parametrized by:

p
— L 3
(@) 1+ ecos¢ (3)
sketch the trajectory (in the (z,y) plane) for (p,e) = (1, %), (p,e) = (%, %)
and (p,e) = (17 %) by considering the points defined by ¢ = {0, 5 77}. What
values of (p,e) correspond to a circle of radius R?

b.  Write (rq4,7p) (the radii for aphelion — furthest and perihelion — closest
approach to the central body) in terms of (p,e).

c. Using the above, find the relationship between the constants of inte-
gration (a, J,) in
1

%-i—ozcosgb
z

r(¢) = (4)
(from our solution using the Lagrangian) and (rq, ) — that is, find a(rq, rp)
and J,(rq,7p).

Problem 2.4

a. Using a generic transformation z® — x'®, establish the contravariant

character of the coordinate differential dz*, and the covariant character of
: 9¢(x) _

the gradient =,

oxk

b. From the definition of polar coordinates in terms of Cartesian: = =
scos¢, y = ssin ¢, construct the matrix-vector equation relating (dz, dy)
to (ds,d¢). If we take the polar (s,¢) to be the transformed coordinates:
(2"t = s,2"% = ¢), and the Cartesian to be the original set (z! = x,2% = y),
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show that your matrix-vector equation represents precisely the contravariant
transformation rule.

C. Work out the gradient for the scalar ¢y = kxy in both Cartesian
(x! = z,2% = y) and polar (2'! = 5,22 = ¢) coordinates. Show, by explicit
construction, that the covariant transformation law relating ¢, to 1 o holds
in this case (i.e. start with ¢ , in Cartesian coordinates, transform according
to f W= gf—,ii/ga and show that this is what you get when you calculate w: L
explicitly).

Problem 2.5

91°  and

Using the matrix point of view, construct the matrix form of both £
%ﬁf for the explicit transformation from Cartesian to polar coordinates:

(2! = 2,22 = y), (2’ = 5,2"% = ¢) (where © = scos¢, y = ssin ¢ defines
(s,¢)). Write both transformation “matrices” in the original and new vari-
ables (so construct %(m) and %(m' ) and the similarly for fracdz'9z%).
Verify, in both coordinate systems, that

dz® 0x'® 50 5

0’8 oxv V" (5)
With Leibniz notation, this relationship is clear, but work out the two ma-
trices on the left and multiply them to see how this goes in real coordinate
systems. The moral value of doing the matrix-matrix multiplication in both
the original Cartesian, and the polar coordinate systems is to drive home
the point that the relation is coordinate independent, but in order to obtain
it correctly you must work in one or the other coordinates.

Problem 2.6

By combining tensors, we can form new objects with the correct tensorial
character.

a. Take two first rank contravariant tensors f* and h”. If we form a
direct product, TH” = fFhY, we get a second rank contravariant tensor. By
transforming f# and h” (for x — 2') in the product, write down the second
rank contravariant tensor transformation law (7" =7).

b. Do the same for the covariant second rank tensor constructed out of
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fu and hy, via T, = f,h,.

c. A scalar transforms as: ¢'(2') = ¢(x(2')) (i.e. a transcription, no
transformation). Show that by taking a contravariant f¢ and covariant hg,
the product ¢ = f*h, is a scalar.

d. (Optional)

If h is a covariant second rank tensor, show that A* = (h,,,)~ " (the matrix
inverse) is a contravariant second rank tensor.
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