# Problem Set 5

Classical Mechanics II Physics 411

Due on October 7th 2007

## Problem 5.1

For the parabolic curve  $y = x^2$  in two dimensions:

**a.** Find the curvature  $\kappa$ , plot this in the vicinity of zero.

**b.** Using the standard (p, e) parametrization of radius for an ellipse:

$$r(\phi) = \frac{p}{1 + e \cos \phi},\tag{1}$$

find the curvature of the ellipse as a function of  $\phi$  – plot for  $\phi = 0 \rightarrow 2\pi$  with p = 1,  $e = \frac{1}{2}$ . Note - feel free to use Mathematica for this one, the derivatives can get . . . involved.

#### Problem 5.2

**a.** The Bianchi identity for the Riemann tensor was a cyclic relation involving the derivatives of  $R_{\alpha\beta\gamma\delta}$ . The electromagnetic field strength tensor is defined as  $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$  for four-potential  $A^{\mu}$ . Find the analogue of the Bianchi identity for  $F_{\mu\nu}$  (assume we're in flat Minkowski space) – i.e. a cyclic relation involving the derivatives of  $F_{\mu\nu}$ .

**b.** Using the Bianchi identity for the Riemann tensor, what is the relation between the gradient of the Ricci scalar,  $R_{,\gamma}$ , and the "divergence" of the Ricci tensor:  $R^{\mu}_{\nu;\mu}$ ?

## Problem 5.3

**a.** For a torus, parametrized by the two angles  $\theta$  and  $\phi$  as indicated in Figure 1 (with R the radius to the center of the tube, a the radius of the

tube), find the metric, compute the connection coefficients, the Riemann  $R^{\alpha}_{\beta\gamma\delta}$  and Ricci tensors and finally, the Ricci scalar.



Figure 1: Toroidal surface parametrized by (R, a),  $\phi$  and  $\theta$ .

**b.** Our formula for the number of elements of the Riemann tensor indicates that in two dimensions, there should be only one independent element – why does it appear we ended up with two for the torus? What is the one independent element?

## Problem 5.4

Find the Riemann tensor for the surface of an infinitely long cylinder (hint: do not calculate the Riemann tensor directly).

#### Problem 5.5

We have been using the implication:

$$g_{\mu\nu,\beta} = 0 \longrightarrow g_{\mu\nu} \doteq \begin{pmatrix} 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ 0 & 0 & \dots & \ddots \end{pmatrix}.$$
 (2)

But, technically, all  $g_{\mu\nu,\beta} = 0$  really implies is that  $g_{\mu\nu}$  is coordinate independent (and we assume symmetric). Finish the argument: Prove that any symmetric, constant, real metric can be brought to the form above – diagonal with ones along the diagonal (assume purely spatial coordinates, so don't worry about possible temporal directions).