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Problem 6.1

Given a covariant second rank tensor hµν (with inverse hµν , as usual), we can
form its determinant by interpreting the tensor elements as matrix elements.
One useful definition for h ≡ det(hµν) is:

h δγα = hαβ C
βγ , (1)

where Cβγ is the cofactor matrix shown diagramatically below.

a. Using this, find the derivatives of the determinant w.r.t. the covariant
components hµν , i.e. what is ∂h

∂hµν
(hint: Check your result with a two-by-two

matrix).

b. What about ∂h
∂hµν ?

hµν=̇








hαβ

Sαβ

Cβγ=̇





|S11| −|S21| |S31| . . .
−|S12| |S22| −|S32| . . .
|S13| −|S23| |S33| . . .
...

...
...

. . .





Figure 1: The Sαβ matrix, for an element hαβ is obtained by crossing out
the row and column of hαβ, collecting everything else into a (D−1)×(D−1)
matrix. The matrix of cofactors is obtained by taking the determinant of
Sαβ and multiplying by (−1)β−1(−1)γ−1, arrayed as shown.
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Problem 6.2

For a non-interacting dust at rest, we measure a uniform energy density ρ0.

a. Suppose this energy density can be thought of as a number density
(number of particles per unit volume) times the relativistic energy per par-
ticle. Compute the number density as observed in a frame moving along a
shared x axis and multiply by the energy per particle as measured in that
frame. This will give you the energy density as measured by the moving
frame.

b. The quantity ρ0 should transform as the 00 component of a second
rank, symmetric tensor – in the rest frame of the dust, T00 = ρ0 and all
other components are zero. By Lorentz boosting along a shared x axis, find
the component T ′00 in a moving frame, it should be identical to your result
above.

c. Show that the expression ρ = Tµνu
µuν , where Tµν is the stress tensor

in the dust rest frame, and uµ is the four-velocity of an observer (moving
with speed v relative to the dust along a shared x axis) is correct for any
observer (to do this, you need only verify that you get the result from the
previous two parts for an observer moving with velocity v, and that you
recover ρ0 when you input the four-velocity of the stationary dust frame).

Problem 6.3

Given a Lagrange density for a scalar field φ in Minkowski space-time, find
the field equations if L takes the form:

L(φ, ∂φ, ∂∂φ), (2)

that is, the Lagrangian depends on the field, its derivatives, and second
derivatives (assume, here, that δφ vanishes on the boundary region, but also
that δφ,µ vanishes).

Problem 6.4

a. Starting from the field equation for Newtonian gravity:

∇2φ = 4πGρm (3)
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with ρm the mass density, rewrite in terms of ρe, energy density.

Suppose you now made the argument that Tµνuµuν ∼ ρe, as we did in class,
but without using c = 1 – what factor of c must you introduce so that
Tµνu

µuν has units of energy density?

By following the usual identification, Rµν ∼ Tµνu
µuν , with all the units in

place, write Einstein’s equation with the correct factors of G and c in place.
Note that the only thing you can’t get out of this is the factor of 2 that
takes the 4π above to 8π.

b. In units where G = c = 1, we can measure mass in meters – find the
conversion factor α below:

Min meters = αMin kilograms. (4)

Using this factor, find the mass of the sun in meters.

Problem 6.5

The correct, scalar form of the action, yields field equations for a scalar ψ:

∂

∂xµ

(
gµβ
√
−gψ,β

)
= 0, (5)

and it is clear that for Minkowski space-time represented in Cartesian coor-
dinates, this yields the D’Alembertian:

− 1
c2
∂2ψ

∂t2
+∇2 ψ = 0. (6)

Show that using cylindrical coordinates in Minkowski gives back the same
equation (i.e. write out (5) explicitly using the Minkowski metric with cylin-
drical coordinates, and show that you can combine terms to form (6) where
∇2 is the cylindrical Laplacian).

3 of 3


