
Note on fast polylogarithm computation

R. E. Crandall
18 Jan 2006

Abstract: The polylogarithm function Lin(z) =
∑∞

k=1 zk/kn, manifestly convergent for
|z| ≤ 1, integer n > 1, is sometimes numerically/symbolically relevant for |z| > 1, i.e.
the analytic continuation may be required. By exploiting analytic symmetry relations, we
give, for integer n, simple and efficient algorithms for complete continuation in complex
z.

1

1. Nomenclature and relations.

The definition

Lin(z) :=
∞∑
1

zk

kn
(1.1)

allows rapid computation for small |z|—one may sum directly. For z barely inside, or on
the unit circle, transformations allow rapid convergence. Outside the unit circle, there are
two difficulties: First, there is no absolute convergence, and second, cuts in the complex
plane must be carefully considered. So for example, it is known that

Li2

(
1

2

)
=

π2

12
− 1

2
log2 2,

as may be verified numerically by direct summation of (1.1), with a precision gain of
about 1 bit per summand. However, it is also known that the analytic continuation has

Li2(2) =
π2

4
− iπ log 2,

even though the sum (1.1) cannot be performed directly. Incidentally, all along the cut
z ∈ [1,∞] there is a discontinuity in the correct analytic continuation, exemplified (for
ε > 0) by

Li2(2 + iε) =
π2

4
+ iπ log 2,

and in general

Disc Lis(z) = 2πi
logs−1 z

Γ(s)
,

with =(Li) always being split equally across the cut—thus we know exactly the imaginary
part of any Lin(z) on the real ray z ∈ [1,∞]; said part is (i/2)Disc. This discontinuity
relation is quite useful in checking of any software.

There are relations that allow analytic continuation, namely these (references [1], [2],
but see analytic corrections of the classical work in [3]):

Lis(z) + Lis(−z) = 21−sLis(z
2), (1.2)

true for all complex s, z, and for n integer, and complex z,

Lin(z) + (−1)nLin(1/z) = −(2πi)n

n!
Bn

(
log z

2πi

)
− 2πiΘ(z)

logn−1 z

(n− 1)!
, (1.3)

where Bn is the standard Bernoulli polynomial and Θ is a domain dependent step function:
Θ(z) := 1, if =(z) < 0 or z ∈ [1,∞], else Θ = 0. That is, the final term in (1.3) is included
when and only when z is in the lower open half-plane union the real cut [1,∞).

2

Another relation we shall use is an expansion for constrained values of log z, this time
for integers n > 1,

Lin(z) =
∞ ′∑
m=0

ζ(n−m)

m!
logm z +

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)) , (1.4)

valid for | log z| < 2π. Here, the
∑ ′

notation means we avoid the singular ζ(1) summand,
and Hq :=

∑q
k=1 1/k with H0 := 0 being the harmonic numbers.

The final relation we shall need for a comprehensive algorithm is, for any complex z
but for n = 0,−1,−2,−3, . . . ,

Lin(z) = (−n)!(− log z)n−1 −
∞∑

k=0

Bk−n+1

k!(k − n + 1)
logk z. (1.5)

The central idea of the algorithms to follow is to employ analytic relations to render
| log z| < 2π, so that either (1.4) or (1.5) applies efficiently.

2. Explicit algorithms for complete analytic continuation.

Some instances of Lin with integer n are elementary, as

Lin(1) = ζ(n), (2.1)

Lin(−1) = −
(
1− 21−n

)
ζ(n),

Li0(z) =
z

1− z
, z 6= 1,

Li1(z) = − log(1− z), z 6= 1,

Li−1(z) =
z

(1− z)2
,

and generally Lin is a rational-polynomial function of z for n ≤ 0 (however, the algorithm
following simply provides a sufficient approximation to such representations without ex-
panding out the requisite rational form).

3

Algorithm 2.1 (poly(n, z)): Computation of Lin(z) for any n ∈ Z, z ∈ C. It is always
assumed that −π < arg z ≤ π, whence the analytic continuation with proper branch cut
behavior is assured in the algorithm’s return value. This algorithm resolves Li at the
worst-case rate of about 1 precision bit per loop iteration.

0) For D-decimal-digit precision, choose summation limit L := dD log2 10e, where we
define functions

F
(0)
n (L, z) := R.H.S. of (1.1) through summation limit L;

F
(1)
n (L, z) := R.H.S. of (1.4) through summation limit L;

F
(−1)
n (L, z) := R.H.S. of (1.5) through summation limit L;

Gn(L, z) := R.H.S. of (1.3);

1) if(z == ±1 or n = −1, 0, 1) return result of (2.1);

2) if(|z| ≤ 1/2) return F
(0)
n (L, z);

3) if(|z| ≥ 2) return Gn(L, z)− (−1)nF
(0)
n

(
L, 1

z

)
;

4) (Here, we have |z| ∈ (1/2, 2), and n < −1 or n > 1.)

return F
(sign(n))
n (L, z);

When analytic continuation is not necessary, say when z ∈ [−1, 1] is real and n > 1, one
may use the following, real-arithmetic algorithm:

Algorithm 2.2 (polyreal(n, z)): Computation of Lin(z) for n > 1 and real z ∈ [−1, 1].
This algorithm resolves Li at the worst-case rate of about 2 precision bits per loop itera-
tion. Note that only real arithmetic is required.

0) For D-decimal-digit precision, choose summation limit L := dD log4 10e, where we
define functions

F
(0)
n (L, z) := R.H.S. of (1.1) through summation limit L;

F
(1)
n (L, z) := R.H.S. of (1.4) through summation limit L;

1) function polyreal(n, z) {
if(z == 1) return ζ(n);
if(z == −1) return − (1− 21−n) ζ(n);

if(|z| < 1/4) return F
(0)
n (L, z);

if(z < 0) return 21−npolyreal(n, z2)− polyreal(n,−z);

return F
(1)
n (L, z); // All arithmetic in (1.4) is real.

}

Note that the recursion (internal call on “if(z < 0)”) can only happen at most once,
because both −z, z2 are positive on the conditional.

4

3. Enhancements and extensions

Though Algorithm 2.1 achieves about 1 precision bit per summand in any of the Fn eval-
uations, somewhat more acceleration can be obtained by adjusting the interval endpoints
of (1/2, 2) to say (r1, r2). Convergence of any part of Algorithm 2.1 is assured if both
| log rk| < π

√
3.

One enhancement is to use some recursion on the quadratic relation (1.2), for said
relation can improve the convergence rate in some cases. In fact, full recursion is certainly
a possibilityin the sense of

Algorithm 3.1 (polyrec(n, z)): Recursive algorithm for Lin(z). We refer to the overall
function of Algorithm 2.1 as poly, and define a new function based on analytic relation
(1.2).

0) Choose a threshold r2 > 1, for example r2 := 2;
1) function polyrec(n, z) {

if(|z| < r2) return poly(n, z); // This can be refined just to invoke parts of poly.
return 2n−1(polyrec(

√
z) + polyrec(−

√
z));

}

The attractive simplicity of this recursion must be weighed against the number of calls
required to reduce the effective z parameter down to the size of r2 via the nested square
roots. Still, some partial recursion of this kind should accelerate step (4) of Algorithm
2.1 by reducing the log z magnitude for the requisite summations.

Finally, it is possible to parallelize these algorithms to obtain Lin(z) on a set {z1, z2, . . . }.
Such parallelization is called for in experimental mathematics work, where say a numerical
integral having polylogarithms in its integrand is to be resolved.

5

References

[1] Erdlyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. Higher
Transcendental Functions, Vol. 1, New York: Krieger.

[2] L. Lewin Polylogarithms and Associated functions, North Holland, 1981.

[3] Wikipedia, the free encyclopedia, Polylogs, 2005:
http://en.wikipedia.org/w/index.php?title=Polylog&redirect=no

6

