Note on sinc-kernel sums and Poisson transformation

R.E. Crandall*

July 22, 2007

In a recent paper [2] R. Baillie, D. Borwein and J. Borwein pose various interesting problems such as that of evaluating sums they define

$$
s_{N, M}:=\sum_{n=1}^{\infty}(\operatorname{sinc} n)^{N} \cos ^{M} n,
$$

where, standardly, $\operatorname{sinc} z:=(\sin z) / z$. Herein we show how to evaluate these, and a great many other "sinc-kernel sums," via Poisson transformation. Coincidentally, Poisson summation just recently was a key expedient in a separate experimental-mathematical treatment to resolve some absolute constants [1].

Bypassing issues of convergence, a general Poisson formula for summation over integer indices is

$$
\sum_{n \in Z} f(n)=\sum_{\mu \in Z} \int_{-\infty}^{\infty} f(x) e^{2 \pi i \mu x} d x
$$

Thus, a certain summation with a sinc-power kernel is, at least formally,

$$
F(N, k):=\sum_{n \in Z}(\operatorname{sinc} n)^{N} \cos (k n)=\sum_{\mu \in Z} \int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{N} e^{i(k+2 \pi \mu) x} d x
$$

In this sense, to get many different sinc-kernel sums it suffices to know the Fourier transform of a power of sinc, that is to know

$$
\mathcal{F}(N, \omega):=\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{N} e^{i \omega x} d x
$$

But in turn, this transform is known in finite form, for any positive integer N, as ${ }^{1}$

$$
\mathcal{F}(N, \omega)=\frac{\pi}{2^{N}(N-1)!} \sum_{j=-\lceil N / 2\rceil}^{\lfloor N / 2\rfloor}\binom{N}{j+\lceil N / 2\rceil}\left(\omega-2 j-\delta_{N o d d}\right)^{N-1} \operatorname{sgn}\left(\omega-2 j-\delta_{N o d d}\right)(-1)^{j+\lceil N / 2\rceil} .
$$

[^0]Some digressional remarks are in order here:

1) This finite-form Fourier transform \mathcal{F} is foreshadowed already in the referenced work [2], where Bernoulli polynomials appear. In a sense the present Fourier approach "unrolls" the Bernoulli identities combinatorially.
2) It is interesting that because the sinc function is - up to a constant factor-the Fourier transform of a "pedestal", or pulse-function on $(-1,1)$, the \mathcal{F} with argument N is (2 2π) times the probability density of the random walk after N incremental-pedestal jumps. This thinking should lead to a version of the celebrated central-limit theorem in regard to sinc-kernel sums. That is to say, we should have, in some asymptotic sense,

$$
\mathcal{F}(N, \omega) \sim \sqrt{\frac{3 \pi}{N}} e^{-3 \omega^{2} /(4 N)},
$$

with an ensuing asymptotic estimate on, say, the sums $s_{N, M}$.
3) Beyond the $s_{N, M}$ of the previous authors, it is likewise possible to consider

$$
\sum_{n \in Z} \operatorname{sinc}^{N}(n) g(n)
$$

for more general g, and combine the Fourier transforms properly, to obtain closed forms.
On point (3) above, one could in principle invoke a Fourier transform of $\cos ^{M} x$ as a superposition of delta-functions. In this special case, though, it is simpler just to observe the finite, elementary decomposition

$$
\cos ^{M} x=2^{-M} e^{i M x} \sum_{m=0}^{M}\binom{M}{m} e^{-2 i m x},
$$

then insert such into the defining sum for $s_{N, M}$, to arrive quickly at a representation for the Baillie-Borwein-Borwein sinc-sum, namely

$$
s_{N, M}=-\frac{1}{2}+\frac{1}{2^{M+1}} \sum_{m=0}^{M}\binom{M}{m} \sum_{\mu \in Z} \mathcal{F}(N, M-2 m+2 \pi \mu) .
$$

However, the formally infinite sum over μ is actually a finite sum because of the sgn functions in the Fourier transform above. We have thus achieved a finite form for the Baillie-BorweinBorwein sum.

In this way we have also proved the theorem, typical of the original treatment [2], that every $s_{N, M}$ is a rational polynomial in π.

Next appears an example matrix of values $1+2 s_{N, M}$. As the matrix shows, those original authors correctly detected experimentally that various sets of s values coincide; and yet, as
they also surmise for related sums, long polynomials in π start emerging.

$$
\left(\begin{array}{llll}
\frac{\pi}{2} & \frac{\pi}{2} & \frac{3 \pi}{8} & \frac{3 \pi}{8} \\
\frac{\pi}{2} & \frac{\pi}{2} & \frac{3 \pi}{8} & \frac{3 \pi}{8} \\
\frac{\pi}{2} & \frac{7 \pi}{16} & \frac{3 \pi}{8} & \frac{71 \pi}{64}-\frac{7 \pi^{2}}{16}+\frac{\pi^{3}}{16} \\
\frac{23 \pi}{48} & \frac{5 \pi}{12} & \frac{413 \pi}{192}-\frac{49 \pi^{2}}{32}+\frac{7 \pi^{3}}{16}-\frac{\pi^{4}}{24} & \frac{5 \pi}{3}-\pi^{2}+\frac{\pi^{3}}{4}-\frac{\pi^{4}}{48}
\end{array}\right)
$$

Here, the rows are labeled $N=1,2,3 \ldots$ downward and the columns are labeled $M=1,2,3$ rightward.

References

[1] D. Bailey, J. Borwein, and R. Crandall, "Resolution of the Quinn-Rand-Strogatz constant of nonlinear physics," preprint June 2007.
[2] Robert Baillie, D. Borwein, and Jonathan M. Borwein, "Surprising Sinc Sums and Integrals," Amer. Math. Month., to appear, 2007.

[^0]: * Center for Advanced Computation, Reed College, Portland OR, crandall@reed.edu.
 ${ }^{1}$ We omit the rather tedious details; but see the ensuing points (1)-(3) which in themselves contain the seeds of derivation.

