Fast evaluation of the Witten zeta function
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1. Fast expansion for certain arguments.

Define L1 |
W(r, s, t) := - .
(r,5,1) mzn;l m’n® (m+n)t

This explicit summation is characteristically slow to converge. A fast evaluation may be
effected via a free parameter X € (0, 1), and the following formula:

When neither r nor s 1s a positive integer,
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(When one or both of r, s is an integer, a different formula with a few more terms applies.)
One observes the pole in W at r+ s+t = 2, with residue I'(1 — r)['(1 — ) /T'(¢). Also,

in the limit £ — 0 we see that the residual term is just the first (v = v = 0) term of

the u, v summation, and so W(r,s,0) = ((r)((s) is verified. Moreover, one may use the

X-formula in various sanity-checking modes, as follows.

+I'(1 —r)I'(1 —s)



1) Varying X within the interval (0,1) should yield an invariant W, as is so for any
valid free-parameter expansion.
2) One may verify numerically the Zagier triangle identity

W(r,s,t) =W(r —1,s,t+1)+W(r,s —1,t+1).
3) A typical numerical value from the X formula is, for X = 4/5 (an efficient choice)
W(r,m,m) ~ 0.121784932649073172392415831466446 . . .
4) A typical evaluation near the pole is, for d := 200001/300000,
W(d, d,d) = 529982.9016524962105 . . .

2. General analytic expansion.

The above expansion for W is illegal for either r, s a positive integer, because 1) The
¢(1) evaluation is illegal, and 2) the I'(1 — r) or I'(1 — s) is also illegal. However, the
singularities do cancel, and we can write a general formula. For real number p, define a
coefficient A,, according to whether p be a positive integer:

A, =T(1—p); p&ZzZ",

_ (=
L(p)

where Hy, = 25:1 1/j is the k-th harmonic number, with Hy := 0. Similarly, define
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Then a general formula is obtained as



For general r, s, whether integer or not,
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The idea here is that the notation

/

2.

means that we avoid any ((1) evaluations entirely. The extra complexity involving the
A, B coefficients and log X arises from said singularity avoidance.

It is not hard to see that the above formula for general r, s reduces to our first formula
when neither 7 nor s is a positive integer (being that all B coefficients vanish).

It is believed that this general formula provides also an analytic continuation of W,
as it can converge even for r, s, t triples for which the defining W sum does not.

A verification of the general formula obtains with X := 4/5, and a summation limit
of 100 on every summation index, with the numerical result

W(2,2,1) ~ 0.8438254351644824574000744235991486399930.. . . ,

which agrees with J. Borwein’s formula

W(2,2,1) = 2¢(2)¢(3) — 3¢(5)

to 40 places.
A suggestion that the general formula provides an analytic continuation is embodied
in the numerical evaluation

W(=3,-3,1/2) ~ 0.0051112406 . . .

References.

Crandall, R. E. and Buhler, J. P. 1995, ”On the evaluation of Euler sums,” Experi-
mental Mathematics, 3, 4, 275-285

)



