Fast evaluation of Zucker moment-sums
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1. Zucker moment-sum

J. Zucker has asked for efficient numerical evaluation of certain moment-sums, namely lattice
sums appropriate to a regular, bipolar crystal structure
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where 7 := {x,y,z}, r := V22 + 3>+ 22 and Y’ means one avoids an origin singularity
during summation. A special instance is the celebrated Madelung constant

M = K(1,{0,0,0}) = —1.74756459463318219 . . .,

calculable via (many) independent methods, and useful for testing the evaluation method
herein. One may also test the present method according to formal identities

K(s—4,{0,0,0}) =3K(s,4,0,0) + 6K(s,{2,2,0}),
K(s—2,{0,0,0}) = 3K(s,{2,0,0}),

easily obtained by expanding powers of 72.

Our basic idea for evaluating the Zucker moment-sums K is to start with the Epstein zeta

function form: A
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where the relevant 3-vectors are @ = {«, 3,7} and ¥ = {z,y,2z}. Then a formal relation
between K and Z is
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Furthermore, as in [Crandall 1998], one may use Riemann splitting on the Epstein Z for
rapid evaluation, in which scheme the cases @ := {«, 3,7} € Z3 involve the form
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where )\ is a free parameter, and both sums are over the 7 := {z,y, 2z} € Z3 lattice, but for
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the second sum we posit v? := (7 — @)? (and so by the hypothesis @ ¢ Z* this second sum
need not be “primed”).

L(s, i, \) = 7732%"

We note that the above splitting formula for Epstein Z also gives analytic-continuation
values: The rapidly-decaying incomplete-gamma function terms have nothing to fear from
complex s arguments of arbitrary magnitude. For example, we infer

Z(0,1) = —1,
K(0,{a,b,c}) =0,

as the analytic-continuation values at s = 0, for any vector 4 & Z3.

From this point onward there are two pathways for arriving at high-precision numerical K
values. One method is to differentiate in (1.1) numerically. Note that only L has nontrivial
derivatoves. To achieve decimal precision p with M := a 4+ b + ¢, one may choose say
€ = 1077~ and calculate
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with the L terms themselves each calculated, via (1.2), to a higher precision, say p - (1 +
max(a, b, c)) digits. The second pathway to K evaluations is again to employ (1.1) but

use symbolic differentiation. This is probably a more accurate scheme overall, but rather
cumbersome to program.



It is a tremendous experimental advantage of Riemann-splitting schemes that the free pa-
rameter \ provides great confidence in the numerics: Whether one is using (1.2) for a Z
value such as the Madelung constant, or for K values from (1.1), one simply changes A and
expects the same result, up to expected precision. It is highly likely that the computational
machinery is functioning correctly if just two distinct A\ values yield the same result.

Some values calculated via the numerical-differentiation form (1.3) are:
K(1,{2,0,0}) = —0.127470428758587322...,

K(2,{2,2,0}) = 0.150324895970907966...,
K(8,{4,0,0}) = —1.583586116167586...
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