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1. Zucker moment-sum

J. Zucker has asked for efficient numerical evaluation of certain moment-sums, namely lattice
sums appropriate to a regular, bipolar crystal structure

K(s, {a, b, c}) :=
∑

~r∈Z3

′ xaybzc(−1)x+y+z

rs
,

where ~r := {x, y, z}, r :=
√

x2 + y2 + z2 and
∑′ means one avoids an origin singularity

during summation. A special instance is the celebrated Madelung constant

M = K(1, {0, 0, 0}) = −1.74756459463318219 . . . ,

calculable via (many) independent methods, and useful for testing the evaluation method
herein. One may also test the present method according to formal identities

K(s− 4, {0, 0, 0}) = 3K(s, 4, 0, 0) + 6K(s, {2, 2, 0}),

K(s− 2, {0, 0, 0}) = 3K(s, {2, 0, 0}),

easily obtained by expanding powers of r2.

Our basic idea for evaluating the Zucker moment-sums K is to start with the Epstein zeta
function form:

Z(s, ~u) :=
∑ ′ e2πi~u·~r

rs
,
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where the relevant 3-vectors are ~u = {α, β, γ} and ~r = {x, y, z}. Then a formal relation
between K and Z is

K(s, ~u) =
(

1

2πi

)a+b+c
(

∂

∂α

)a (
∂

∂β

)b (
∂

∂γ

)c

Z(s, ~u) |~u={1/2,1/2,1/2}. (1.1)

Furthermore, as in [Crandall 1998], one may use Riemann splitting on the Epstein Z for
rapid evaluation, in which scheme the cases ~u := {α, β, γ} 6∈ Z3 involve the form

(1.2)

Z(s, ~u) = − λs/2

Γ(s/2 + 1)
+
∑ ′ e2πi~u·~r

rs

Γ(s/2, λr2)

Γ(s/2)
+ L(s, ~u, λ),

with

L(s, ~u, λ) = πs−3/2
∑ 1

v3−s

Γ((3− s)/2, π2v2/λ)

Γ(s/2)
.

where λ is a free parameter, and both sums are over the ~r := {x, y, z} ∈ Z3 lattice, but for
the second sum we posit v2 := (~r − ~u)2 (and so by the hypothesis ~u 6∈ Z3 this second sum
need not be “primed”).

We note that the above splitting formula for Epstein Z also gives analytic-continuation
values: The rapidly-decaying incomplete-gamma function terms have nothing to fear from
complex s arguments of arbitrary magnitude. For example, we infer

Z(0, ~u) = −1,

K(0, {a, b, c}) = 0,

as the analytic-continuation values at s = 0, for any vector ~u 6∈ Z3.

From this point onward there are two pathways for arriving at high-precision numerical K
values. One method is to differentiate in (1.1) numerically. Note that only L has nontrivial
derivatoves. To achieve decimal precision p with M := a + b + c, one may choose say
ε = 10−p−M and calculate

K(s, ~u) ≈
∑

~r∈Z3

′ xaybzc(−1)x+y+z

rs

Γ(s/2, λr2)

Γ(s/2)
(1.3)

+
(

1

2πiε

)M a∑
j=0

b∑
k=0

c∑
l=0

(
a
j

)(
b
k

)(
c
l

)
(−1)j+k+l

L

(
s,

{
1 + (a− 2j)ε

2
,
1 + (b− 2k)ε

2
,
1 + (c− 2l)ε

2

}
, λ

)
with the L terms themselves each calculated, via (1.2), to a higher precision, say p · (1 +
max(a, b, c)) digits. The second pathway to K evaluations is again to employ (1.1) but
use symbolic differentiation. This is probably a more accurate scheme overall, but rather
cumbersome to program.
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It is a tremendous experimental advantage of Riemann-splitting schemes that the free pa-
rameter λ provides great confidence in the numerics: Whether one is using (1.2) for a Z
value such as the Madelung constant, or for K values from (1.1), one simply changes λ and
expects the same result, up to expected precision. It is highly likely that the computational
machinery is functioning correctly if just two distinct λ values yield the same result.

Some values calculated via the numerical-differentiation form (1.3) are:

K(1, {2, 0, 0}) = −0.127470428758587322...,

K(2, {2, 2, 0}) = 0.150324895970907966...,

K(8, {4, 0, 0}) = −1.583586116167586...
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