Fast evaluation of Zucker moment-sums

R. E. Crandall

29 Sep 05

1. Zucker moment-sum

J. Zucker has asked for efficient numerical evaluation of certain moment-sums, namely lattice sums appropriate to a regular, bipolar crystal structure

$$
K(s,\{a, b, c\}):=\sum_{\vec{r} \in Z^{3}}, \frac{x^{a} y^{b} z^{c}(-1)^{x+y+z}}{r^{s}},
$$

where $\vec{r}:=\{x, y, z\}, r:=\sqrt{x^{2}+y^{2}+z^{2}}$ and \sum^{\prime} means one avoids an origin singularity during summation. A special instance is the celebrated Madelung constant

$$
M=K(1,\{0,0,0\})=-1.74756459463318219 \ldots,
$$

calculable via (many) independent methods, and useful for testing the evaluation method herein. One may also test the present method according to formal identities

$$
\begin{gathered}
K(s-4,\{0,0,0\})=3 K(s, 4,0,0)+6 K(s,\{2,2,0\}), \\
K(s-2,\{0,0,0\})=3 K(s,\{2,0,0\}),
\end{gathered}
$$

easily obtained by expanding powers of r^{2}.

Our basic idea for evaluating the Zucker moment-sums K is to start with the Epstein zeta function form:

$$
Z(s, \vec{u}):=\sum^{\prime} \frac{e^{2 \pi i \vec{u} \cdot \vec{r}}}{r^{s}}
$$

where the relevant 3 -vectors are $\vec{u}=\{\alpha, \beta, \gamma\}$ and $\vec{r}=\{x, y, z\}$. Then a formal relation between K and Z is

$$
\begin{equation*}
K(s, \vec{u})=\left.\left(\frac{1}{2 \pi i}\right)^{a+b+c}\left(\frac{\partial}{\partial \alpha}\right)^{a}\left(\frac{\partial}{\partial \beta}\right)^{b}\left(\frac{\partial}{\partial \gamma}\right)^{c} Z(s, \vec{u})\right|_{\vec{u}=\{1 / 2,1 / 2,1 / 2\}} . \tag{1.1}
\end{equation*}
$$

Furthermore, as in [Crandall 1998], one may use Riemann splitting on the Epstein Z for rapid evaluation, in which scheme the cases $\vec{u}:=\{\alpha, \beta, \gamma\} \notin Z^{3}$ involve the form

$$
\begin{equation*}
Z(s, \vec{u})=-\frac{\lambda^{s / 2}}{\Gamma(s / 2+1)}+\sum^{\prime} \frac{e^{2 \pi i \vec{u} \cdot \vec{r}}}{r^{s}} \frac{\Gamma\left(s / 2, \lambda r^{2}\right)}{\Gamma(s / 2)}+L(s, \vec{u}, \lambda) \tag{1.2}
\end{equation*}
$$

with

$$
L(s, \vec{u}, \lambda)=\pi^{s-3 / 2} \sum \frac{1}{v^{3-s}} \frac{\Gamma\left((3-s) / 2, \pi^{2} v^{2} / \lambda\right)}{\Gamma(s / 2)}
$$

where λ is a free parameter, and both sums are over the $\vec{r}:=\{x, y, z\} \in Z^{3}$ lattice, but for the second sum we posit $v^{2}:=(\vec{r}-\vec{u})^{2}$ (and so by the hypothesis $\vec{u} \notin Z^{3}$ this second sum need not be "primed").

We note that the above splitting formula for Epstein Z also gives analytic-continuation values: The rapidly-decaying incomplete-gamma function terms have nothing to fear from complex s arguments of arbitrary magnitude. For example, we infer

$$
\begin{gathered}
Z(0, \vec{u})=-1, \\
K(0,\{a, b, c\})=0,
\end{gathered}
$$

as the analytic-continuation values at $s=0$, for any vector $\vec{u} \notin Z^{3}$.
From this point onward there are two pathways for arriving at high-precision numerical K values. One method is to differentiate in (1.1) numerically. Note that only L has nontrivial derivatoves. To achieve decimal precision p with $M:=a+b+c$, one may choose say $\epsilon=10^{-p-M}$ and calculate

$$
\begin{gather*}
K(s, \vec{u}) \approx \sum_{\vec{r} \in Z^{3}}, \frac{x^{a} y^{b} z^{c}(-1)^{x+y+z}}{r^{s}} \frac{\Gamma\left(s / 2, \lambda r^{2}\right)}{\Gamma(s / 2)} \tag{1.3}\\
+\left(\frac{1}{2 \pi i \epsilon}\right)^{M} \sum_{j=0}^{a} \sum_{k=0}^{b} \sum_{l=0}^{c}\binom{a}{j}\binom{b}{k}\binom{c}{l}(-1)^{j+k+l} \\
L\left(s,\left\{\frac{1+(a-2 j) \epsilon}{2}, \frac{1+(b-2 k) \epsilon}{2}, \frac{1+(c-2 l) \epsilon}{2}\right\}, \lambda\right)
\end{gather*}
$$

with the L terms themselves each calculated, via (1.2), to a higher precision, say $p \cdot(1+$ $\max (a, b, c))$ digits. The second pathway to K evaluations is again to employ (1.1) but use symbolic differentiation. This is probably a more accurate scheme overall, but rather cumbersome to program.

It is a tremendous experimental advantage of Riemann-splitting schemes that the free parameter λ provides great confidence in the numerics: Whether one is using (1.2) for a Z value such as the Madelung constant, or for K values from (1.1), one simply changes λ and expects the same result, up to expected precision. It is highly likely that the computational machinery is functioning correctly if just two distinct λ values yield the same result.

Some values calculated via the numerical-differentiation form (1.3) are:

$$
\begin{gathered}
K(1,\{2,0,0\})=-0.127470428758587322 \ldots \\
K(2,\{2,2,0\})=0.150324895970907966 \ldots \\
K(8,\{4,0,0\})=-1.583586116167586 \ldots
\end{gathered}
$$

References.

Crandall, R. E. 1998, Fast evaluation of Epstein zeta functions, manuscript,
www.reed.edu/~crandall

