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Abstract. It is remarkable that the quantum zeta function, defined as a sum over energy
eigenvaluesE:

Z(s) =
∑ 1

Es

admits of exact evaluation in some situations for which not a singleE be known. Herein we show
how to evaluate instances ofZ(s), and of an associated parity zeta functionY (s), for various
quantum systems. For some systems bothZ(n), Y (n) can be evaluated for infinitely many
integersn. SuchZ, Y values can be used, for example, to effect sharp numerical estimates of a
system’s ground energy. The difficult problem of evaluating the analytic continuationZ(s) for
arbitrary complexs is discussed within the contexts of perturbation expansions, path integration,
and quantum chaos.

1. Introduction

We define the quantum zeta function as a formal sum over system eigenvaluesE:

Z(s) =
∑ 1

Es
(1.1)

when such a sum exists.Z is of course reminiscent of the celebrated Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
. (1.2)

When the ordered energy eigenvaluesE are discrete, non-vanishing, and sufficiently
divergent, we expect the literal sum for the functionZ(s) to converge for sufficiently
large Re(s). Indeed, the Riemann sum converges for Re(s) > 1, this observation being the
historical starting point for analytic continuation to general complexs. PresumablyZ(s)
will, in most situations, likewise possess an analytic continuation. It is remarkable that
Z(s) can be evaluated in terms of fundamental constants (such asπ and various algebraic
constants) and values of standard functions (such as, say, the gamma function orζ itself)
in certain quantum settings for which not a single isolatedE has been so evaluated. When
eigenstates can be assigned definite parity, we define also a companion entity called the
parity zeta functionY (s):

Y (s) =
∑ ±1

Es
(1.3)
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where the sign(±) of a term is the parity of the eigenstate associated with the givenE.
We shall also be able to provide exact evaluations ofY for certain systems.

Previous results on the quantum zeta function include those of Voros (1980) and Berry
(1986), who made use of various identities involving quantum theoretical constructs such
as resolvent operators and Green functions. Zeta function regularization and physical
applications of the quantum zeta functon are discussed in Elizalde (1994). There is a
zeta function field theory literature exemplified in the work of Steiner (1987). Herein
we concentrate on systems characterized by a non-relativistic, real-valued one-dimensional
potentialV (x), adopting the standard Green function expressed in terms of orthonormal
eigenstate wavefunctionsψn as

G(x, x0, E) =
∑
n

ψn(x)ψ
∗
n (x0)

E − En
(1.4)

which stands as a particular solution of the Schrödinger equation (we adopt atomic units
m = h̄ = 1 throughout)

− 1

2

∂2G

∂x2
+ V (x)G− EG = −δ(x − x0). (1.5)

It is fortuitous that many exact evaluations ofZ can be obtained via knowledge of the
zero-energy Green functionG(x, x0, 0) or of E-derivatives ofG at E = 0. On the notion
of orthonormality of the wavefunctions it is formally immediate from (1.4) that

Z(1) = −
∫
G(x, x,0) dx (1.6)

with the integral taken over the one-dimensional domain on which the eigensystem is defined
(for exampleV (x) = x2 relegated to the domainx ∈ (0,∞) would be an appropriate setting
for an harmonic oscillator system with infinite reflecting wall at the origin). More generally,
for positive integersn

Z(n) = − 1

(n− 1)!

∫
G(n−1)(x, x,0) dx (1.7)

whereG(m) denotes themth partial derivative ofG with respect to the energy argument.
Another representation forZ(n), n ∈ Z+ amounts to an attractive trace relation of Itzykson
et al (1986), following again from orthonormality, to the effect that

Z(n) = (−1)n
∫
G(x1, x2, 0)G(x2, x3, 0) · · ·G(xn, x1, 0) dx1 dx2 · · · dxn . (1.8)

For symmetric potentialsV the parity zeta function enjoys the formal relation

Y (1) = −
∫
G(x,−x, 0) dx (1.9)

as follows immediately, again, from the eigenstate sum forG. Relations forY (n) for larger
integersn may be obtained in straightforward fashion, in the partial-derivative or Itzykson
et al trace forms.
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It is more difficult to evaluateZ(s) or Y (s) for general complexs. One idea we shall
exploit is to transform the spacetime propagatorK, defined as

θ(t)K(x, t |x0, 0) = i

2π

∫ ∞

−∞
G(x, x0, E)e

−iEt dE (1.10)

where theE-integral is taken just above the real axis so to avoid theE-poles (Crandall
1993). The eigenstate representation of the spacetime propagator is

K(x, t |x0, 0) =
∑
n

ψn(x)ψ
∗
n (x0)e

−iEnt . (1.11)

Formally, the quantum zeta function can be cast as a Mellin transform

Z(s) = is

0(s)

∫ ∞

0
t s−1

∫
K(x, t |x, 0) dx dt . (1.12)

This representation is often referred to as the heat-kernel form of the zeta function. It is of
interest that the inverse transform yields the quantum partition function

∑
n

e−τEn = 1

2π i

∫ c+i∞

c−i∞

Z(s)0(s)ds

τ s
(1.13)

where the real parameterc is to the right of allZ poles. Exact knowledge ofK, as
may sometimes be achieved through path integration, can give rise to exact quantum zeta
evaluations. When a potential is time-dependent, the problem of ill-defined steady-state
eigenvaluesE can be circumvented by defining the quantum zeta function in heat-kernel
form, that is, in terms of the complete time-domain integral (1.12). It is therefore natural
to propose this Mellin transform as the very definition of the quantum zeta function. What
is more the Mellin transform, by conveying information about zeros ofZ, may find future
application to the problem of quantum chaos. We further discuss this Mellin transform
representation at the end of the paper.

A word on the practical applications of the quantum zeta function is in order. We
have the classical observation of Waring, exploited previously by Berry (1986), that when
0< E0 < E1 < E2 < · · ·, the ground energyE0 can be extracted in principle from

E0 = lim
s→∞Z(s)

−1/s . (1.14)

Thus sufficient knowledge of the large-s behaviour ofZ(s) will yield information about the
ground state. As early as 1781, Euler used

Z(s)−1/s < E0 <
Z(s)

Z(s + 1)
(1.15)

together with extrapolation methods, to resolve to one part per million a certain Bessel
zero, which zero happens to be the lowest-lying eigenvalue for a vibrating disc (Berry
1986). When the potentialV is symmetric, a sharp ground energy estimate can often be
obtained from the apparently new asymptotic relation

E0 ∼ 1

2

(
Z(s)

Z(s + 1)
+ Y (s)

Y (s + 1)

)
(1.16)
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in which the influence of the first excited energy,E1, decays rapidly ass → ∞.
There is also the possibility of extracting ground-state information by analysing the

leading asymptotic behaviour of the inverse transform (1.13). If enough be known about
the line integral’s behaviour for large realτ , the ground energyE0 can be extracted. This
procedure is reminiscent of the Feynman–Kac technique of extracting the ground energy
from the spacetime propagtor itself (Schulman 1981).

In situations where an explicit set of excited-state energiesE1, E2, . . . , Em are known
to some numerical precision, one can alternatively estimate the ground energy via

1

Es0
∼ Z(s)−

m∑
n=1

1

Esn
−

∞∑
n=m+1

1

Ws
n

(1.17)

whereWn denotes, say, a WKB approximation toEn. Similar relations using the parity
zeta functionY (s) are possible; in fact the employment ofY evaluations tends to be a
superior numerical strategy because of the cancellations inherent inY . It has been observed
previously (Berry 1986) that quantum zeta approximation strategies can yield surprisingly
good ground state estimates. We demonstrate this phenomenon in some of our examples to
follow.

2. The perturbed oscillator

Here we determineZ(s), for arbitrary complexs, for the singularly-perturbed oscillator
specified by

V (x) = 1

2
ω2x2 + g

x2
(2.1)

where the perturbation parameterg satisfiesg > − 1
8. This restriction turns out to be

necessary to prevent a ‘fall to the centre’, i.e. to allow a well-defined eigensystem.
We consider first the simple harmonic case (g = 0). For spatial domain(−∞,∞) the

system is possessed of well known eigenvaluesEn = (n + 1
2)ω, so that for Re(s) > 1 we

have

Z(s) =
∞∑
n=0

1

Esn

= 1

ωs

(
1(
1
2

)s + 1(
3
2

)s + 1(
5
2

)s + · · ·
)

= 2s − 1

ωs
ζ(s) . (2.2)

We infer by analytic continuation that theZ of the simple harmonic oscillator is thus related
directly to the Riemann zeta function, for arbitrary complexs.

Now considerg 6= 0. The relevant spatial domain is now(0,∞), with all wavefunctions
vanishing at thex = 0 singularity. The exact spacetime propagator for arbitraryx, x0 > 0
has been developed via path integration (Khandekar and Lawande 1975) as

K(x, t |x0, 0) = ω
√
xx0

i sin ωt
e

1
2 iω (x2+x0

2) cot ωt Ia

( ωxx0

i sin ωt

)
(2.3)
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whereIν is the modified Bessel function of orderν, and a natural parameter

a = 1
2

√
1 + 8g (2.4)

has entered the theory. The ensuing steps of analysis proceed most smoothly (i.e. relevant
integrals clearly exist) if the oscillator frequencyω be assigned an infinitesimal negative
imaginary part. A relevantK-integral is∫ ∞

0
K(x, t |x, 0) dx = e−iaωt

eiωt − e−iωt
(2.5)

which when used in the Mellin transform representation (1.12) yields the quantum zeta
function for Re(s) > 0 as

Z(s) = is

0(s)

∫ ∞

0

t s−1e−iω(a+1)t

1 − e−2iωt
dt (2.6)

= 1

(2ω)s
ζ

(
s,
a + 1

2

)
(2.7)

whereζ(s, a) is the Hurwitz zeta function, defined as

ζ(s, ρ) =
∞∑
n=0

1

(n+ ρ)s
(2.8)

when the literal sum exists. The Hurwitz zeta function also has a well-studied analytic
continuation (Apostol 1976), and we conclude that the quantum zeta function of the
perturbed oscillator has been determined, for arbitrary complexs, in terms of standard
functions. Note that in the ‘simple harmonic limit’a → 1

2 we obtain the Dirichlet series

Z(s) =
(

2

ω

)s ( 1

3s
+ 1

7s
+ 1

11s
+ · · ·

)
(2.9)

which is precisely the zeta sum over the simple harmonic oscillator’s odd-parity states, for
the even states are extinguished by the origin singularity.

3. Power potentials

Consider the power potential

V (x) = |x|ν (3.1)

whereν is any positive real number. Herein we derive exact evaluations ofZ(1) andY (1).
While previous treatments (Voros 1980) contain such results for positive even integersν, we
shall not need this restriction. Accordingly, on the assumption ofν-analyticity, we arrive
at some compelling conjectures.

Except for the simple harmonic oscillator (ν = 2) and the absolute-linear potential
(ν = 1), energy eigenvalues have so far eluded closed-form evaluation in terms of standard
functions or fundamental constants. Even whenν = 1 the energies are related to zeros and
derivative-zeros of the Airy function, and whether these special real numbers can be called
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fundamental is perhaps a question of taste. In many ways the canonical unsolved eigenvalue
problem is that of the quartic oscillator,V (x) = x4. This system has been tirelessly studied
over the decades, but again, not a singleE for the quartic has been successfully cast in closed
form. An interesting anecdote in this regard runs as follows. Some years ago Turschner
(1979) announced a closed-form evaluation foreveryquartic eigenvalue. Though this result
appeared sufficiently erudite, involving values of the gamma function, the eigenvalues were
subsequently shown by numerical techniques to be wrong. Turschner’s effort, though, as an
approximation scheme brought about renewed interest in the art of estimating and bounding
the elusive eigenvalues, as exemplified in the work of Crandall and Reno (1980).

Within the present context the generalν-dependent evaluations ofZ(1) andY (1) may
be derived in the following way. We resort to the zero-energy Green function. Happily,
though the power-potential Schrödinger equation has (except forν = 1, 2) not been solved
explicitly, it is nevertheless possible to give the general solution for the zero-energy equation

− 1

2

∂2ψ

∂x2
+ xνψ = 0 (3.1)

as (Abramowitz and Stegun 1965)

ψ(x) = √
x(AI1/p(αx

p/2)+ BK1/p(αx
p/2)) (3.2)

whereI,K are the standard modified Bessel functions, we definep = ν+2, α = √
8/p, and

A,B are undetermined superposition constants. One may now fabricate a Green functionG

by presuming it to be the product of two such general solutions (one inx, one inx0), then
invoking boundary conditions. There are four conditions that, taken together, completely
specify the zero-energy Green function. One condition is thatG be well behaved for
fixed x0 and x → ∞. Two more conditions are: continuity ofG, and of ∂G/∂x0 when
x0 = 0, x 6= 0. A fourth condition is the necessary discontinuity relation for any system’s
Green function (Crandall 1993)

Disc
x=x0

∂G

∂x
= 2 (3.3)

which relation is necessitated by the delta-function source term in (1.5). These conditions
can be applied, together with known asymptotic behaviour ofI,K and knowledge of the
Wronskian ofI,K (Abramowitz and Stegun 1965) to yield the following form for the exact
zero-energy Green function. The result is, for|x| > |x0|

G(x, x0, 0) = − 4

p

√
|xx0|K1/p(α|x|p/2)

(
S(x, x0)I1/p(α|x0|p/2)

+ sin(π/p)

π
K1/p(α|x0|p/2)

)
(3.4)

whereS(x, x0) = 1 if x, x0 have the same sign, otherwiseS(x, x0) = 0. As with Green
functions generally, one obtainsG in the case|x| 6 |x0| by swapping coordinates in (3.4).
It is possible now to integrate eitherG(x, x,0) or G(x,−x, 0) over x ∈ (−∞,∞) (these
procedures are somewhat intricate, involving the formidable Weber–Schafheitlin integrals of
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Bessel functions) to arrive at the zeta values (we use superscript(ν) to specify the potential
in question)

Y (ν)(1) =
(

2

(ν + 2)2

)ν/(ν+2) 02
(

2
ν+2

)
0

(
3
ν+2

)
0

(
4
ν+2

)
0

(
1 − 1

ν+2

) (3.5)

Z(ν)(1) =
(

1 + sec
2π

ν + 2

)
Y (ν)(1) . (3.6)

For ν a positive even integer, these results agree with those of Voros (1980). Let us
analyse some special cases. First, for the simple harmonic oscillator (ν = 2), Z(2)(1) is
singular (indeed, equation (2.2) indicates a pole for this system’sZ(2)(s) at s = 1). Yet the
parity zeta function according to equation (3.5) is

Y (2)(1) = π√
8
. (3.7)

This is reasonable, because (takingω = √
2, g = 0 in (2.1)) the oscillating sum forY ,

namely

1√
2

(
1
1
2

− 1
3
2

+ 1
5
2

− · · ·
)

(3.8)

is likewise seen to beπ/
√

8.
For the absolute-linear potential (ν = 1) the literal sum forZ(1)(1) does not exist (the

E values for this system diverge, but too slowly), yet on the assumption thatZ(ν)(1) be
analytic in ν we arrive at

Z(1)(1) = −
(

2

9

)1/3 0
(

2
3

)
0

(
4
3

) . (3.9)

It is natural to conjecture that this (negative) value represents the correct analytic
continuation of the system’s quantum zeta function to the locations = 1. Easier to grasp
intuitively is the evaluation

Y (1)(1) = −Z(1) (3.10)

which is a positive real number corresponding to the alternating sum of reciprocal energies
for V (x) = |x|. We shall have more to say about this system’s eigenvalues in the next
section, in which the quantum bouncer (linear potential relegated to positive spatial axis) is
analysed.

It is evident from equation (3.5) thatY (ν)(1) is a positive real number foreverypositive
ν. This is reasonable, since an alternating sum of reciprocal energies (if the series be
summed in natural order) is expected to converge to a positive limit as long as the energies
themselves diverge. From equation (3.6) we see that only for the simple harmonic oscillator
(ν = 2) is Z(ν)(1) singular. Thus, on the assumption ofν-analyticity, we have established
a continuation valueZ(ν)(1) for every positive powerν. It is interesting that, for every
potential ‘under’ the harmonic (i.e.ν < 2) the continued valueZ(ν)(1) is negative, while
it is positive for all potentials ‘above’ the harmonic (i.e.ν > 2). The physical meaning, if
any, of this phenomenon is obscure.
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The limit ν → ∞ deserves mention, for in this limit the system is that of an infinite
well, with relevant domainx ∈ (−1, 1) at whose ends stand infinite reflecting barriers.
Indeed, on the basis of standard gamma function asymptotics (Henrici 1977) the limiting
values are

Y (∞)(1) = 2
3

(3.11)
Z(∞)(1) = 4

3 .

Indeed, these limits are reasonable because the relevantZ sum for this infinite potential
well is an even-state sum plus an odd-state sum:

Z(∞)(1) =
∞∑
m=0

1

π2(2m+ 1)2/8
+

∞∑
m=1

1

π2m2/2

= 1 + 1
3 (3.12)

with Y (∞)(1) obtained in similar fashion as(1 − 1
3).

For the quartic oscillator (ν = 4) the beautiful evaluation forZ(4)(1), originally found
by Voros (1980) as

Z(4)(1) = 32/3

8π2
05

(
1
3

)
= 3Y (4)(1) (3.13)

with value Z(4) ∼ 3.635 003 644 88. . ., may be verified numerically in the following,
instructive way. The standard WKB approximations toEn for the quartic are

Wn = (c(n+ 1
2))

4/3 (3.14)

where the constant is

c =
√

8π
0

(
7
4

)
0

(
1
4

) . (3.15)

The following numerical test was carried out. Using 140 experimental (i.e. differential equa-
tion solution) values 1/E0, 1/E1, . . . ,1/E139, and the WKB values 1/W140, . . . ,1/W9000,
all of these were summed (Moore and Vajk 1995). Then a ‘tail,’ an integral of 1/Wx , over
x ∈ (9001,∞), was finally added to give what might be called an ‘experimental’ value
Z(4)(1) ∼ 3.635 0017. . .. This experimental value is correct to better than one part per
million.

Beyond the numerical verification, the calculation is indicative of the opportunity to
estimate the ground energy itself. It is interesting that, usingonly the excited WKB
approximations and the relation

1

E0
∼ Y (1)+ 1

W1
− 1

W2
+ 1

W3
− · · · (3.16)

one obtains a quartic ground energyE0 estimate with an error of less than 0.1 per cent.
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4. The quantum bouncer

The quantum bouncer is a system for which the potential is linear but an infinite reflecting
wall resides at the origin. That is, for a positive realλ andx > 0

V (x) = λx (4.1)

while the potential is taken to be infinite for negativex. This system is the quantum
theoretical version of a massm bouncing off the origin under the force of uniform gravity
g, with physical energiesε related to our dimensionless eigenvalues byε = (mh̄2g2/λ2)1/3E.
For this system we shall be able to evaluateZ(n) for any integern > 1. The explicit sum
for Z(1) diverges, although an analytic continuation ofZ(s) to s = 1 is believed to exist
as we explain at the end of this section.

All wavefunctions, and the Green function, must vanish atx = 0. The Schr̈odinger
equation

− 1

2

∂2ψ

∂x2
+ λxψ − Eψ = 0 (4.2)

is essentially the Airy differential equation whose general solution for arbitraryE involves
the standard Airy functions Ai,Bi (Abramowitz and Stegun 1965). By careful boundary
condition matching as in the last section one can obtain the exact Green function, for
x > x0 > 0, as

G(x, x0, E) = π
√

2bAi(b(λx − E))

(
Ai(b(λx0 − E))Bi(−bE)

Ai(−bE) − Bi(b(λx0 − E)

)
(4.3)

whereb = (2/λ2)1/3. We note that this Green function may also be derived in a completely
different way, using the path integral and perturbation expansion approach in Crandall
(1993). In every order of perturbation theoryG can be explicitly evaluated, and the
perturbation series summed by way of hypergeometric function theory.

As usual the energy eigenvalues correspond toE-poles ofG. These poles occur when
Ai(−bE) = 0, so that forn = 0, 1, 2, . . . we have

En = (λ2/2)1/3|an+1| (4.4)

wheream is themth zero (ordered by magnitude) of Ai(z).
To obtainZ(n) it is enough to obtain the integral (overx ∈ (0,∞)) of theE-derivative

G(n−1)(x, x, E) at E = 0. The procedure is somewhat intricate, so we simply list the
relevant relations as follows:

Z(n) = −π2n/3Tn−1(0)

0(n)λ2n/3
(4.5)

where theT -function is defined by

(−1)nTn(z) = C(n)(z)

∫ ∞

0
Ai(u)2 du−

n∑
j=1

(
n

j

)
C(n−j)(z)

dj−1

dzj−1
Ai(z)2

+ dn−1

dzn−1
(Ai(z)Bi(z)) (4.6)
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with C defined by

C(z) = Bi(z)/Ai(z) . (4.7)

We then invoke explicit derivative evaluations for the Airy functions, valid form =
0, 1, 2, . . .

Ai (m)(0) = fm(−1)m sin(π(m+ 1)/3) (4.8)

Bi(m)(0) = fm(1 + sin(π(4m+ 1)/6) (4.9)

where the constantsfm are defined as

fm = 3(m−2)/30(m+1
3 )

π
. (4.10)

The last two derivative relations can be obtained by appropriate contour integration, starting
with integral representations (Abramowitz and Stegun 1965) of Ai,Bi. We shall need one
final relation, namely∫ ∞

0
Ai(u)2 du = 0

(
5
6

)
2π5/6121/6

(4.11)

again derivable via contour integration. Putting all of this knowledge together allows
evaluation ofZ(n) for any integern > 1, as in the following cases (forλ = 1

2, which
choice allows a little simplification):

Z(2) = 35/304
(

2
3

)
π2

(4.12)

Z(3) = 4 − 35/206
(

2
3

)
π3

(4.13)

Z(4) = 310/308
(

2
3

)
π4

− 3−1/6802
(

2
3

)
π

(4.14)

Z(5) = 32/31004
(

2
3

)
π2

− 325/6010
(

2
3

)
π5

(4.15)

Z(6) = 16

5
− 35/2406

(
2
3

)
π3

+ 35012
(

2
3

)
π6

(4.16)

and so on. On the appearance of such formulae we are moved to conjecture that eachZ(n)

is always a polynomial, with rational coefficients, in the curious number

02
(

2
3

)
31/6π

. (4.17)

Here is how one may test the Waring limiting scheme (1.14) numerically for the ground
state. First, forλ = 1

2 the ground-state energy is known (from tables of Airy zeros) to be

E0 ∼ 1.169 053 705. . . . (4.18)
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ConsiderZ(30), which as expected is a formidable but finite series. The numerical value
of the Waring approximation toE0 turns out to be

Z(30)−1/30 ∼ 1.169 053 703. . . (4.19)

which gives a fractional error of order 10−9.
One byproduct of this quantum zeta analysis is a set of identities involving the time-

honoured Airy zerosan. Using the proportionality of the quantum bouncer’s eigenvalues
to these zeros we establish the attractive identity

∞∑
n=1

1

a2
n

= 35/304
(

2
3

)
4π2

(4.20)

with analogous identites, involving higher even powers of 1/an, following immediately
from the other exactZ evaluations.

The potentalV (x) = |x|, where now as in Section 3 the spatial domain is(−∞,∞),
has energy eigenvalues proportional to|an| (for odd states) but proportional to|a′

n| (for even
states), wherea′

n denotes thenth zero of the derivative Ai′. From (3.10), then, we arrive at
another evaluation

∞∑
n=1

(
1

an
− 1

a′
n

)
= 3−2/30

(
2
3

)
0

(
4
3

) . (4.21)

On subtraction of equation (3.10) from (3.9), and again scaling properly from energy
eigenvalues to Airy zeros, we develop a conjecture: the analytic continuation of the function

z(s) =
∞∑
n=1

1

|an|s (4.22)

valid as an explicit sum for Re(s) > 3
2, has

z(1) = −3−2/30
(

2
3

)
0

(
4
3

) (4.23)

and that theZ(s) of the quantum bouncer (withλ = 1
2) has the (negative) continuation

value

Z(1) = 2z(1) . (4.24)

5. The delta ring

We turn to another system for which exact evaluation ofZ(n) is possible for any positive
integer n. The ‘delta ring’ is a system for which a particle moves freely on a circle
(anglex ∈ (−π, π ]), save for the influence of a delta function well of couplingA at angle
x = 0. The desired Green function, call itG(A)(x, x0, E), will be a particular solution to a
periodicized version of (1.5)

− 1

2

∂2G

∂x2
+ V (x)G− EG = −

∑
n∈Z

δ(x − x0 − 2πn) . (5.1)
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where the periodic potential with couplingA is given by

V (x) = −A
∑
n∈Z

δ(x − 2πn) . (5.2)

WhenA = 0 the system is a free rotor whose Green function, call itG(0), is a simple
superposition of free particle Green functions

G(0)(x, x0, E) = − i

k

∑
n∈Z

eik|x+2πn−x0|

= 1

k

cos(k(π − |x − x0|))
sin(kπ)

(5.3)

whereE = k2/2. As usual the energy eigenvalues are pole locations, which occur fork ∈ Z

E = 0,
12

2
,

22

2
,

32

2
, . . . (5.4)

where it is important to observe that each positiveE value is two-fold degenerate: there
are two eigenstates (one even, one odd parity) for each positive eigenvalue. Clearly, the
quantum zeta function is ill-defined for theA = 0 free rotor, becauseE0 vanishes. However,
for non-zeroA we may proceed to evaluateZ(n).

Consider first a system defined on the full axis (x ∈ (−∞,∞)) and with potential
(5.2). (The defining Schrödinger equation, however, is to have only a single source term
−δ(x − x0) on the right.) This system is envisioned as a particle moving freely save for
the influence of an infinitely wide delta-function comb of separation 2π . Using the path
integral approach of Crandall (1993) we may formally expand the Green function, call it
H(A) to distinguish it fromG(A) , as

H(A)(x, x0, E) = − i

k

∞∑
j=0

(
iA

k

)j ∑
µ1,...,µj∈Z

exp
(
ik(|x − 2πµj | + |2πµj − 2πµj−1|

+ · · · + |2πµ1 − x0|
)

(5.5)

where thej = 0 summation is understood to be just eik|x−x0|. Convergence issues for the
infinite µ sums can be successfully addressed by assigning tok a positive imaginary part.
Now to obtain the delta ring Green functionG(A) we can periodicize according to

G(A)(x, x0, E) =
∑
n∈Z

H(A)(x + 2πn, x0, E) . (5.6)

Happily, it turns out that the entire perturbation sum now collapses because of then-
summation. Let bothx, x0 ∈ (−π, π ], and consider the first sum encountered in the
development of (5.6), namely∑

n∈Z
eik|x+2πn−2πµj | . (5.7)

This sum is patently independent ofµj . This means theµj sum itself can be performed,
which sum is independent ofµj−1, and so on. The perturbation sum thus boils down to

G(A)(x, x0, E) = G(0)(x, x0, E)− AG(0)(x, 0, E)G(0)(0, x0, E)

1 + AG(0)(0, 0, E)
. (5.8)



On the quantum zeta function 6807

Explicitly, then, the exact delta ring Green function forx, x0 ∈ (−π, π ] is

G(A)(x, x0, E) = 1

k

cos(k(π − |x − x0|))
sin(kπ)

− A

2k2

csc2(πk)

1 + (A/k) cot(πk)

(
cos

(
k(|x| − |x0|)

) + cos
(
k(|x| + |x0| − 2π)

))
.

AssumingA be non-zero, the energy eigenvalues are now the pole locations given by either
of the two conditions

sin(kπ)

k
= 0

(5.10)

tan(πk) = −A
k
.

The former condition specifies odd parity states, whose energies incidentally are unchanged
by any delta function because the odd parity wavefunctions vanish at the delta location.
The second relation determines the even parity states, these states generally being shifted
in a direction depending on the sign of the coupling constantA. Note that, due to delicate
cancellation of singularities in (5.9) whenA is non-zero, there is no pole atk = 0.

Consider now a functionZ(1; k) defined as

Z(1; k) =
∑
n

1

En − k2/2

= −2
∫ π

0
G(A)(x, x, E) dx

= 1

k2
− π

k
cot(πk)− π

A
+ π

(
A
k

+ k
A

) − 1
k

k + A cot(πk)
. (5.11)

It is this function whosek-derivatives atk = 0 will give exact quantum zeta evaluations.
Evidently the numberZ(n) can always be cast as a polynomial in 1/A, with coefficients
being rational multiples of powers ofπ . In particular,

Z(1) = −2π

A
+ 4

3
π2 (5.12)

Z(2) = 4π2

A2
− 8

3

π3

A
+ 32

45
π4 (5.13)

Z(3) = −8π3

A3
+ 8π4

A2
− 16

5

π5

A
+ 512

945
π6 (5.14)

and so on. Because odd-parity states are unperturbed by the delta potential, an evaluation
of Y is immediate

Y (s) = Z(s)− 4ζ(2s) . (5.15)

As we can resolveZ(n), Y (n) for any positive integern, it is intriguing to contemplate the
use of the asymptotic relation (1.16) to effect anA-expansion of the ground-state energy.
Symbolic computation suggests that the approximation

E0 ∼ 1

2

(
Z(n)

Z(n+ 1)
+ Y (n)

Y (n+ 1)

)
(5.16)



6808 R E Crandall

gives a series for the delta ring ground energy, to O(An+1). Thus for example the
employment of exact evaluationsZ(4), Z(5), Y (4), Y (5) yields

E0 ∼ − A

2π
− 1

6
A2 − 2π

45
A3 − 8π2

945
A4 + O(A5) (5.17)

corresponding to the least solution to the tangent relation of (5.10) withE = k2/2.

6. The quantum pendulum

We turn to a difficult but illuminating system, the ‘quantum pendulum’ specified by

V (x) = −A cosx (6.1)

wherex ∈ (−π, π ] and all wavefunctions have period 2π . This system is again a free rotor,
save for directed gravitational force acting on the motion. For uniform gravityg, particle
massm, and pendulum rod lengthL, the couplingA can be taken to be the dimensionless
structure constant

A = gm2L3

h̄2 . (6.2)

Though closed forms for quantum zetas are yet unattainable, we shall at least be able to
provide convergent series for calculation ofZ(1) and Y (1). In particular, the series for
Y (1) will enjoy rapid convergence.

We shall employ an infinite-dimensional matrix approach. Assume first that the Green
function appropriate to the periodicized Schrödinger equation (5.1) withV (x) = −A cosx
can be written as theansatz

G(x, x0, E) = − 1

π

∑
n∈Z

gn(x0, E)e
in(x−x0) . (6.3)

Now equation (5.1) is formally satisfied if, forn ∈ Z andE = k2/2 we have

(n2 − k2)gn(x0)− A(gn−1(x0)e
ix0 + gn+1(x0)e

−ix0) = 1 . (6.4)

This leads to a formal representation of the Green function as

G(x, x0, E) = − 1

π

∑
m,n∈Z

eimx(D−1)mne
−inx0 (6.5)

whereD is the infinite-dimensional matrix

D =



. . .

−k2 + 22 −A 0 0 0

−A −k2 + 12 −A 0 0

0 −A −k2 −A 0

0 0 −A −k2 + 12 −A
0 0 0 −A −k2 + 22

. . .


(6.6)
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Explicitly

Dmn = (−k2 +m2)δmn − Aδm,n−1 − Aδm,n+1 . (6.7)

Consider for the moment a finite versionDN of the matrixD, which version is(2N + 1)-
by-(2N + 1), so that the diagonal elements ofDN run from −k2 + (−N)2 to −k2 + (N2)

inclusive. We shall ultimately take the limitN → ∞. What will drive the ensuing analysis
is a set of key numbersej defined as determinants of partial,(N − j + 1)-by-(N − j + 1)
matrices (we now suppress zero entries in the visual display)

ej = Det



−k2 + j2 −A
−A −k2 + (j + 1)2 −A

−A .. .

−k2 + (N − 1)2 −A
−A −k2 +N2

 (6.8)

and we assign the valueeN+1 = 1 for convenience in what follows. It is evident on the
basis of matrix manipulation that

Det(DN) = −k2e2
1 − 2A2e1e2 (6.9)

and furthermore that the numberF = e1/e2 will be, in the large-N limit, the continued
fraction

F(k) = (1 − k2)− A2

(4 − k2)− A2

(9 − k2)− · · ·
. (6.10)

The quantum pendulum eigenvalues occur asE-singularities of theD matrix. It follows
from the relation (6.9) for Det(DN) that for even parity states an eigenvalueE is a solution
to the relation

0 = −2E − 2A2

(1 − 2E)− A2

(4 − 2E)− · · ·
(6.11)

while for odd parity statesE the relevant relation is

0 = 1 − 2E − A2

(4 − 2E)− A2

(9 − 2E)− · · ·
. (6.12)

These continued fraction zeros are (up to a proportionality constant) classical Mathieu
eigenvalues (Abramowitz and Stegun 1965), which is expected because the pendulum
Schr̈odinger equation is a manifestation of the Mathieu equation.

Using the Green function representation (6.5) we have the trace relations:

Z(1) = 1

π

∫ π

−π

∑
m,n∈Z

eimx(D−1)mne
−inx dx

= 2 Tr(D−1) (6.13)
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where Tr denotes matrix trace, and

Y (1) = 1

π

∫ π

−π

∑
m,n∈Z

eimx(D−1)mne
inx dx

= 2 Cr(D−1) (6.14)

where Cr denotes the ‘counter-trace;’ i.e. the sum of the elements of the perpendicular
diagonal, or

∑
m D

−1
m,−m.

Happily, it is possible to express the inverse ofDN in convenient form. By analysing
minors, fori > j one obtains

(D−1
N )ij = (−1)i+j (−A)i−j e1−j ei+1

Det(DN)
(6.15)

with each of i, j running through [−N,N ]. All other elements of the inverse may be
obtained from Hermitian symmetry. Thus we have

Tr(D−1
N ) = 1

Det(DN)

(
e2

1 + 2(e0e2 + e−1e3 + e−2e4 + · · ·)) (6.16)

Cr(D−1
N ) = 1

Det(DN)

(
e2

1 + 2(A2e2
2 + A4e2

3 + A6e2
4 + · · ·)) . (6.17)

Convergent series for the zeta functions can now be formulated on the basis of recursion
relations for the key numbersej . Let pn, qn be the convergents to the continued fraction
for F(k). Specifically,p−1 = 1, q−1 = 0, p0 = 1 − k2, q0 = 1, and forn > 1

pn−1 = (n2 − k2)pn−2 − A2pn−3 (6.18)

qn−1 = (n2 − k2)qn−2 − A2qn−3 . (6.19)

Now the ej satisfy the same recursion relations (except for an index offset), and for non-
negativen we have superposition formulae

e−n = (−k2e1 − A2e2)pn−1 − A2e1qn−1 (6.20)

en+2 = A−2n(e2pn−1 − e1qn−1) . (6.21)

The resulting zeta series now follow from (6.9) and the trace formulae (6.16), (6.17) as (for
these series,pm, qm denote the convergents to the numberF(0))

Z(1) = −F(0)
A2

+ 2

F(0)

∞∑
n=0

p2
n−1 − F(0)2q2

n−1

A2n
(6.22)

Y (1) = −F(0)
A2

− 2

F(0)

∞∑
n=0

(pn−1 − F(0)qn−1)
2

A2n
. (6.23)

Both zeta functions here are well defined unless the pendulum with couplingA happens to
have a zero eigenvalue. Stated another way: if neitherF(0) = 1−A2/(4−A2/(9−A2 · · ·))
norA2/F (0) vanishes, the sums exist andZ(1), Y (1) are both well defined. The series for



On the quantum zeta function 6811

Y (1) is quite convergent, due to the rapidity with whichpn/qn → F(0). A numerical
evaluation of the parity zeta function is, for pendulum couplingA = 1,

Y (1)∼−3.615 644 253 507 767 293 665 116 737 324 139 287 349 999 562 811 928 0509. . . .

(6.24)

Actually, due to the satisfactory convergence it is possible to obtain typicalY (1) evaluations
to thousands of digits in a convenient time span. TheZ(1) series, however, converges slowly
as is. But convergence can be accelerated via detailed analysis of the continued fraction
asymptotics. An example of an accelerated series for this quantum zeta function is

Z(1) = −F(0)
A2

+ 4ζ(2)+ 8A2ζ(6)+ 24A2ζ(8)

+ 2

F(0)

∞∑
n=1

(
p2
n−2 − F(0)2q2

n−2

A2n−2
− 2F(0)

(
1

n2
+ 2A2

n6
+ 6A2

n8

))
. (6.25)

Such acceleration techniques were used to calculateZ(1) for couplingA = 1, as

Z(1) ∼ 4.757 888 110 183 612 153 949 189 635 865 216 502 181 005 204 662 108 093 48. . . .

(6.26)

It is hard to imagine attaining such high precision through, say, direct summation of
reciprocals of calculated Mathieu eigenvalues.

A more generalY series can in fact be used to extract isolated Mathieu eigenvalues
themselves. The generalized version of (6.23) is

Y (1; k) =
∞∑
n=0

(−1)n

En − k2/2

= 1

1 + (k2F(k)/2A2)

(
−F(k)
A2

− 2

F(k)

∞∑
n=0

(pn−1 − F(k)qn−1)
2

A2n

)
(6.27)

where nowpm, qm are understood to be convergents toF(k). SetA = 5
4, so that the

standard Mathieu nomenclature (Abramowitz and Stegun 1965) hasq = 4A = 5, and
b2(q) = 8E1, whereE1 is the first excited energy of the quantum pendulum. For thisA

it turns out thatE1 is the smallest (in magnitude) system eigenvalue. Traditional tables
haveb2(5) ∼ 2.099 460 45. . .. Now takingnumericalderivatives ofY (1; √

2E) at E = 0
allows, in the spirit of (1.7) and (1.14), a Waring estimation ofE1. For n = 40 this
procedure was carried out, giving the Mathieu eigenvalue estimate

b2(5) ∼ 2.099 460 445 486 665 364. . . (6.27)

presumed correct to the implied precision.
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7. Matrix methods

Among the systems we have analysed stand two quantum scenarios for ring domain
x ∈ (−π, π ]. Consider the general ring system defined by

− 1

2

∂2G

∂x2
+ V (x)G− EG = −

∑
n∈Z

δ(x − x0 − 2πn) (7.1)

where the potential

V (x) =
∑
m∈Z

am cos(mx) (7.2)

is manifestly periodic. In this notation the delta ring of section 5 hasam = −A/(2π) for
all m, while the quantum pendulum of section 6 hasa1 = a−1 = −A/2 and all otheram
zero.

We could have studied the quantum zeta function for the delta ring using the general
formal solution

G(x, x0, E) = − 1

π

∑
m,n∈Z

eimx(D−1)mne
−inx0 (7.3)

where theD matrix is cast in terms of the Fourier coefficients of the potential:

D =



. . .

12 − k2 0 0

0 −k2 0

0 0 12 − k2

. . .


+ 2



. . .

a0 a1 a2

a−1 a0 a1

a−2 a−1 a0

. . .


. (7.4)

Within this matrix formalism, then, the delta ring could have been analysed in terms of
determinants of matrices of the form

M = 1 +



. . .

c c c

c c c

c c c

. . .


(7.5)

where1 is a diagonal matrix andc = −A/π . Indeed, the determinant of any such matrix
has an elegant symbolic representation:

Det(M) = −z2 ∂

∂z

(
1

z

∏
i

(1ii + c − z)

)∣∣∣∣∣
z=c
. (7.6)

This representation can actually be used (in fact the algebraic details are instructive) to
establish the exact diagonal elements ofD−1 for the delta ring, and therefore to recover the
functionZ(1; k) defined in (5.11).
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For application to other, as yet unexplored periodic ring systems, we describe an
algorithm due to Wheeler (1995) for trace computation. This method has the feature of
requiring neither determinantal calculations nor matrix inversions. The Wheeler algorithm
runs so:

To obtain Tr(D−1), whereD is N -by-N ,

(i) Define Tm := Tr(Dm), for m = 0, 1, 2, . . . , N;
(ii) DefineQ0 := 1 and form = 1, 2, . . . , N

Qm :=
m∑
j=1

(−1)j−1 (m− 1)!

(m− j)!
TjQm−j ; (7.7)

(iii) Define Pi := (−1)iQN−i/(N − i)!, for i = 0, . . . , N.

Then

Tr(D−1) = − 1

P0

N−1∑
i=0

TiPi+1 . (7.8)

We present a numerical calulation based on the algorithm. Consider the periodic
potential

V (x) = − cos(x)+ 2 cos(2x)− cos(3x) (7.9)

which specifies what might be called a ‘rippled pendulum’ system. A quantum zeta function
evaluation is

Z(1) = 2 Tr(D−1) (7.10)

whereD is the seven-banded infinite matrix

D =



. . .

22 −1 2 −1 0

−1 12 −1 2 −1

2 −1 0 −1 2

−1 2 −1 12 −1

0 −1 2 −1 22

. . .


. (7.11)

Using the Wheeler algorithm which, again, invokes only matrix powering and rational
arithmetic, we obtain (for finite(2N + 1)-by-(2N + 1) versions ofD and Romberg
extrapolation over variousN up to N = 100) the estimateZ(1) ∼ 1.315 96. It would
be good to get independent verification of thisZ value for the rippled pendulum.
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8. Open problems

An outstanding open problem is that of providing exact evaluation ofZ(n), for some integer
n > 1, for the quartic oscillator. It should be mentioned that Voros (1980) has evaluated
analytic continuation values such asZ(0), Z′(0); and also given numerical values of other
Z(s). Clearly, the larger a real argument ofZ, the more information is conveyed about the
quartic’s elusive ground-state energy.

Though we have presented a prescription for resolving allZ(n), n > 1 for the quantum
bouncer, and conjectured an analytic continuation valueZ(1), it would be of interest to
evaluateZ(s) for non-integrals. Being as thenth Airy zero rises in magnitude ascn2/3,
one wonders, for example, whether the analytic continuationZ(s) has a solitary pole at
s = 3

2. There is also the open polynomial conjecture ending with (4.17).
For the delta ring we have likewise shown how to evaluateZ(n) for all positive integers

n, yet we do not knowZ(s) for any others. On the basis of the asymptotic growth
En ∼ n2/2 for any couplingA, one may expect a pole ofZ at s = 1

2.
For the quantum pendulum it is evidently difficult to develop highly efficient series for

anyZ(n). One wonders whether it begenerallytrue across systems thatY (1) appear more
numerically tractable thanZ(1). Another open problem is to derive quantum zeta results for
the pendulum on the basis of a perturbation expansion of which (5.5) is indicative. Though
this approach has worked out for the delta ring, the analogous perturbation series for the
pendulum has so far, due presumably to its extreme complexity, resisted attack.

Now to the issue of quantum chaos. First consider the circular billiard, whose defining
Schr̈odinger equation is taken to be the two-dimensional form

− 1
2∇2G− EG = −δ2(r − r0) (8.1)

with the caveat that the Green functionG(r, r0, E) vanish everywhere on the unit circle;
i.e.G = 0 whenever|r| = 1 or |r0| = 1. This system (with and without magnetic flux) has
been studied by Berry (1986), Elizalde (1993) and Leseduarte (1994). The quantum zeta
function is, for sufficiently large Re(s)

Z(s) =
∑ 1

Es
= 2s

∑
ν∈Z

∑
n∈Z+

1

j2s
|ν|,n

(8.2)

wherejµ,n is thenth positive zero ofJµ. One may employ the identity (Watson 1922)

Jν(z) = (z/2)ν

0(ν + 1)

∞∏
n=1

(
1 − z2

j2
ν,n

)
(8.3)

and the standard ascending series forJν to obtain such evaluations as

Z(2) = 1
12π

2 − 5
8 (8.4)

Z(3) = 1
4ζ(3)− 1

16π
2 + 35

96 (8.5)

and so on. Berry (1986) has shown how to obtain such integer-argument evaluations from
the Itzyksonet al trace formulae applied to the zero-energy Green function (which function
for the circular billiard can actually be written down in an elegant, logarithmic form).
On the other hand the work of Elizalde (1993) reveals a clever method for extracting
zeta values without recourse to a Green function, Bessel sum rules being used instead.
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Though the numbersZ(n), n = 2, 3, . . . are tractable for the billiard, we know little
about the analytic continuationZ(s), although the continuation to the negative real axis
has been effectively studied in Leseduarte (1994). The open problem of general analytic
comtinuation is important in regard to quantum chaos. There is the possibility that quantum
zeta functionsZ(s) for classicallychaotic systems will possess special analytic properties.
For example, some characteristic distribution of zeros ofZ(s) in the complexs-plane might
be a ‘signature’ for a chaotic Hamiltonian. In particular, the ‘heart’ and ‘Africa’ billiards
(each having non-circular boundary) exhibit classical chaos (Robnik 1983). It is for these
reasons that further results onZ(s) for classically chaotic billiard systems, and even for the
circular billiard, would be welcome indeed.

Another possible approach to an analytic theory of quantum chaos is the following.
An anharmonic oscillator Hamiltonian, such as yields the quantum bouncer or quantum
pendulum, can be expected to exhibit classical chaos under the influence of a time-dependent
driving force (an object bouncing under gravity on an undulating platform is one of the
oldest and easiest demonstrations of chaos). Therefore the proposed Mellin transform
definition (1.12) might be adopted in order to resolve some asymptotic property of the
analytic continuation ofZ(s). In this way, characteristic quantum-chaotic properties of
Z might be revealed. One looks longingly at the Mellin transform and wonders whether
path integration might allow for sufficiently fine analytical approximations. Indeed, it is
theoretically possible to integrate over the time domain very early on in the Feynman path
integration development ofK. The procedure yields a pure-geometric (i.e. devoid of time-
dependence) path integral representation forZ(s). Work on this formalism is in progress.

Finally, when the potential is symmetric there is an interesting, as yet unexplored
perturbation theory approach to evaluation of the parity zeta functionY (s). This is to
use the formal Green function representation, derivable via path integration (Crandall 1993)

G(x, x0, E) = − i

k

∞∑
j=0

(−i

k

)j ∫
exp

(
ik(|x − xj | + |xj − xj−1|

+ · · · + |x1 − x0|)
) j∏
m=1

(V (xm) dxm) (8.6)

with the j = 0 integral interpreted as eik|x−x0|, and as usualE = k2/2. Since Y
can be obtained in principle from the integral ofG(x,−x,E) over the spatial domain,
one may perform thisx-integral first. This removes all spatial dependence from the
perturbation expansion, leaving only a set ofE-dependent,j−dimensional integrals for
j = 1, 2, . . .. What is especially intriguing is that for many potentials, such as power
potentials, exponential potentialsV (x) = eλ|x|, and many other forms, eachj -integral can
be cast in closed form. Thus there is hope for new evaluations ofY (n), n ∈ Z+ based on
exact summation of perturbation series.
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