On a Bessel-integral of J. Borwein

R. E. Crandall

24 Aug 2004
J. Borwein has asked for a rapid numerical evaluation scheme for the integral

$$
\mathcal{J}:=\int_{0}^{\infty} \int_{0}^{\infty} \frac{J_{1}^{2}(2 \sqrt{x y})}{\left(e^{x}-1\right)\left(e^{y}-1\right)} d x d y
$$

It will not do to attempt a straightforward insertion of the expansion

$$
J_{1}^{2}(t)=\sum_{n=1}^{\infty} a_{n} t^{2 n}
$$

even though one can derive the exact coefficient

$$
a_{n}=\frac{(-1)^{n-1}}{4^{n} n!^{2}}\binom{2 n}{n+1}
$$

Because

$$
\left|a_{n}\right| \sim \frac{1}{n!^{2} \sqrt{\pi n}}
$$

it turns out that the formal integral for \mathcal{J}-with the power series simply inserted-does separate into disjoint x, y integrals, but gives a divergent expansion in terms of Riemann- ζ functions.

Happily, the asymptotic character of the a_{n} allows us to develop a finite part of the \mathcal{J}-integral, and then use formal power-series insertion. To this end, define

$$
H(m, n):=\int_{0}^{\infty} \int_{0}^{\infty} J_{1}^{2}(2 \sqrt{x y}) e^{-m x-n y} d x d y
$$

Now, formally, we have the Borwein-Bessel integral as

$$
\mathcal{J}=\sum_{m, n \geq 1} H(m, n)
$$

and we also have the exact evaluation (via symbolic manipulation, say):

$$
H(m, n)=\frac{1}{2}\left(\frac{m n+2}{\sqrt{m n(m n+4)}}-1\right)
$$

It turns out that if we truncate the formal sum over the $H(m, n)$ and then insert the a_{n} series, convergence of the integrated series is assured. Indeed, choosing a cutoff integer N, we have formally

$$
\mathcal{J}=\left(\sum_{m=1}^{N-1} \sum_{n=1}^{N-1}+\sum_{m=N+1}^{\infty} \sum_{n=1}^{\infty}+\sum_{m=1}^{N} \sum_{n=N+1}^{\infty}\right) H(m, n) .
$$

Now it turns out that for sufficiently large N, say $N>4$, the insertion of the a_{n} series into the H integral gives absolutely convergent series for the 2 nd and 3rd sums.

The final N-cutoff expansion is, assuming the closed-form $H(m, n)$ and the Hurwitz zeta function $\zeta(s, N)$ such that $\zeta(s, 1)=\zeta(s)$,

$$
\mathcal{J}=\sum_{m=1}^{N-1} \sum_{n=1}^{N-1} H(m, n)+\sum_{s=2}^{\infty}(-1)^{s}\binom{2 s-2}{s}\left(2 \zeta(s) \zeta(s, N)-\zeta(s, N)^{2}\right)
$$

Taking the threshold case $N=5$, we have

$$
\begin{aligned}
\mathcal{J}=-8+ & \frac{9}{4 \sqrt{2}}+\frac{5 \sqrt{3}}{4}+\frac{21}{8 \sqrt{5}}+\frac{5}{2 \sqrt{6}}+\frac{11}{6 \sqrt{13}}+\frac{4}{\sqrt{15}}+\frac{5}{\sqrt{21}}+ \\
& \sum_{s=2}^{\infty}(-1)^{s}\binom{2 s-2}{s}\left(2 \zeta(s) \zeta(s, 5)-\zeta(s, 5)^{2}\right)
\end{aligned}
$$

which is an algebraic sum plus a geometrically convergent "tail," since $\zeta(s, N) \sim 1 / N^{s}$. Taking $N=40$ allows about one decimal digit per summand of the zeta-tail, to yield such as

$$
\mathcal{J} \approx 1.1038396536176132500751953873457081344493477394099807622387
$$

