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J. Borwein has asked for a rapid numerical evaluation scheme for the integral

J = // e‘]12\/_) dz dy.
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It will not do to attempt a straightforward insertion of the expansion
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even though one can derive the exact coefficient
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it turns out that the formal integral for J—with the power series simply inserted—does
separate into disjoint x, y integrals, but gives a divergent expansion in terms of Riemann-(
functions.

Happily, the asymptotic character of the a,, allows us to develop a finite part of the
J-integral, and then use formal power-series insertion. To this end, define

H(m,n) ::/ / J2(2y/xy) e ™ dy dy.
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Now, formally, we have the Borwein—Bessel integral as

J = Z H(m,n),
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and we also have the exact evaluation (via symbolic manipulation, say):
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It turns out that if we truncate the formal sum over the H(m,n) and then insert the
a,, series, convergence of the integrated series is assured. Indeed, choosing a cutoff integer
N, we have formally
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Now it turns out that for sufficiently large N, say N > 4, the insertion of the a,, series
into the H integral gives absolutely convergent series for the 2nd and 3rd sums.

The final N-cutoff expansion is, assuming the closed-form H(m,n) and the Hurwitz
zeta function ((s, N) such that (s, 1) = {(s),

J = Z Z H(m,n) + Z ( 2) (2¢(s)¢(s, N) = C(5,N)?).
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Taking the threshold case N = 5, we have
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which is an algebraic sum plus a geometrically convergent “tail,” since ((s, N) ~ 1/N?®.
Taking N = 40 allows about one decimal digit per summand of the zeta-tail, to yield such
as

J ~ 1.1038396536176132500751953873457081344493477394099807622387.



