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J. Borwein has asked for a rapid numerical evaluation scheme for the integral

J :=
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It will not do to attempt a straightforward insertion of the expansion

J2
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2n,

even though one can derive the exact coefficient
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Because
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1

n!2
√

πn

it turns out that the formal integral for J—with the power series simply inserted—does
separate into disjoint x, y integrals, but gives a divergent expansion in terms of Riemann-ζ
functions.

Happily, the asymptotic character of the an allows us to develop a finite part of the
J -integral, and then use formal power-series insertion. To this end, define

H(m, n) :=

∫ ∞

0

∫ ∞

0

J2
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xy) e−mx−ny dx dy.

Now, formally, we have the Borwein–Bessel integral as

J =
∑

m,n≥1

H(m, n),
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and we also have the exact evaluation (via symbolic manipulation, say):
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− 1

)
.

It turns out that if we truncate the formal sum over the H(m,n) and then insert the
an series, convergence of the integrated series is assured. Indeed, choosing a cutoff integer
N , we have formally
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Now it turns out that for sufficiently large N , say N > 4, the insertion of the an series
into the H integral gives absolutely convergent series for the 2nd and 3rd sums.

The final N -cutoff expansion is, assuming the closed-form H(m, n) and the Hurwitz
zeta function ζ(s, N) such that ζ(s, 1) = ζ(s),
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Taking the threshold case N = 5, we have
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which is an algebraic sum plus a geometrically convergent “tail,” since ζ(s, N) ∼ 1/N s.
Taking N = 40 allows about one decimal digit per summand of the zeta-tail, to yield such
as

J ≈ 1.1038396536176132500751953873457081344493477394099807622387.
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