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Abstract. Cyclic convolution of two two-dimensional signals, each of dimension M-by-N,
can be performed by traditional Fourier methods in O(M N log M N) complex operations.
When the signals are real, however, so that the final convolution is likewise real, there is no
need to involve imaginary numbers at any stage of the calculation. Instead, one may use
either the real-valued fast Fourier transform (RVFFT, also known as the Hermitian FFT),
or the fast Hartley transform (FHT). Then the necessary spectral (dyadic) multiply of the
classical convolution theorem becomes a different but related operation amongst RVFFT
or FHT coefficients. By establishing the precise formula for the new spectral multiplies, we
establish herein a two-dimensional real convolution scheme that is fast, and also in-place:
no memory substantially beyond that of the input signals is required.
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1. Definitions and terminology

This paper concerns cyclic convolutions of two-dimensional real signals. We presume
that a signal « comprises elements x,z, where coordinate j can range from 0 to M — 1, k
from 0 to N — 1. Given such an array, we define the following discrete transformations,
where a and b range over the same respective intervals:

1. The Fourier transform (FFT) &
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2. The Hermitian, or real-valued Fourier transform (RVFFT) X:
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where («) y
cos(z) 0<c<P/2
CSe,p(x) = { sin(z) P/2<c< P’ (1.3)

3. The Hartley transform (FHT)
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where cas(z) = cos(z) + sin(z).
Fast algorithms (O (N log N)) to compute each of these transforms are known.
Provided the original 2-dimensional signal z is real, each of the three transforms
contains equivalent information: given any one of the three transforms z, X , H , one may
determine unambiguously the other two.

2. General strategy

Under the FFT, the cyclic convolution x ® y assumes the form of simple dyadic mul-
tiplication. That is, the classical convolution theorem can be expressed thus:

('fi’ ® g)ab = -%ab gab- (2.1)

Convolution under the RVFFT and FHT is more complicated, but can be derived by
exploiting their relation to the DFT.

For notational simplicity, we shall abbreviate cos(27ja/M) as C, and define Cy, S,
and S similarly. Furthermore, we define

5+:{1 0<a<M/2 (2.2)

0 M/2<a<M’
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with d; definited similarly and = =1 — §*. We can then write our three transforms as

Tap = Zj,k C.Cp— ) CoSp— ) SeCp+ SaSe
):(ab:zj,k (6F6F) CoCht+ (616;) CaSet+ (676) SaCot+ (676;) SaSe
Hy,, = ka CoCp+ CaSp+ S.Cp+ SaS(b2 3

Now, we pick two relations (the Fourier and, for purposes of argument, the Hermitian
FouArier) and treat them as a system of two equations in four variables to find Z in terms
of X or vice versa. If R X

#=F(X)and X = F~1(2), (2.4)
then L .

XQY =F (2®7y

( Ay) ) (2.5)

=FHF(X)F(Y)].

To determine the convolution relation, then, we need only demonstrate the relation between
ZTap and Xy for a single array .

3. Convolution under the Hermitian Fourier transform

Equation (1) cannot be solved in the general case for the RVFFT. It is therefore
necessary to divide the array z ;i into several regions:

Region 1: The four points (0,0), (M/2,0), (0, N/2), (M/2,N/2).
In this region, the two transforms assume identical values and the convolution is

straightforward: A .
To,0 = )fo,o Typye0 = {(M/Q,O

. N 3.1
Zo,nj2 = Xo,n/2 Tmy2,N/2 = Xmy2,N) 2, (3:1)
resulting, for the convolution Z=X®Y in simple dyadic multiplication:

Zap = XapYap, a=0,M/2, b=0,N/2. (3.2)

Region 2: The four lines where a = 0, M /2 or b = 0, N/2, excluding the Region 1.
In this region, the relations are defined as follows:

A Ak 5 . >
Lap =T _qg,—p = Xap + "'X—a,—b

% _ [ & Re(@ap) — 0, Im(&a) a=0,M/2 (3-3)
7\ 6 Re(dqp) — 07 Im(20p) b =0,N/2,

where —a = M — a and —b = N — b except for a,b = 0 to bring the index within the
required range of values. This results in the convolution relation

R Zab = )gvabi}ali - Xai—b}:/ ,—b
Za—b=Xag,~bYap + XapYa,—p
R Zab = jgabYAralZ - X—Aa,b?—a,b
Z—a,b = X—a,,bYab + XabY—a,b

} a=0,M/2, 0<b< N/2
(3.4)
} a=0<a<M/2, b=0,N/2.
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Region 3: The remaining array elements, consisting of four quadrants: [1, M/2 — 1] x
[1, N/2 — 1] and its reflection about a = M/2, b = N/2, and both.

In this case, if we simply specify a,b € [1, M/2 — 1] x [1, N/2 — 1], the values in all
four quadrants will emerge at once:

Tap =37, = Xap —iXa o —iX_ap— X_a b
-’i'a,—b = 5%*_0”13 = Xab + iXa,—b - iX—a,b + X—a,—b
2A)Evab = Re(i'ab + i—a,b)

2X—a,b = Im(:i’—a,b - -'f;ab)
2Xva,—b = _Im(:i'a,b + -'ij—a.,b)
2X—a,—b = Re(i:_a,b - Si‘ab).

In order to obtain the convolution relation for the four quadrants, define the quantities
A, B,C, D as follows:

A= (Xab - X—a,—b)( ab — ?—a,—b) - (Xa —b+ X—a,b) (ffa,—b + ?—a,b)
B = (Xab + X—a,—b)( Aab + ?—a,—b) - (Xa,—b - X—a,b) (?a,—b - ?—a,b) (3 6)
C= (Xa,—b + X—a,b) (?ab - }Af—a,—b) + (Xab - X—a,—b)( Aa,—b + ?—a,b)
D= (Xa,,—b - X—a,b) (},}a,b + ?—a,—b) + (Xa,b + X—a —b) (},}a,,—b - 1A/—a,b)
Then
27, = A+ B
27 _,_p=B—-—A
(3.7)
224 _p=C+D

4. Convolution under the Hartley transform

In the case of Hartley convolution, the solution to (1) is much easier due to the
relationship between exp(iz) and cas(x) which does not depend on the conditionally-valued
0’s. Upon close examination the Hartley and Fourier transforms may be written in terms
of each other as follows:

2H,, = (ijja,b + -f;—a,b + aA:a,,—b - 7:i‘—a,—b)

S . . s (4.1)
28ap = (—iHap + H_op + Ho—p +1H_o )

Applying the method above for L = A ® K, the Hartley analog of 2 = 2 ® § = 2y,
we write
2L, = (Z'ZA:ab + é—a,b + 20,,—1) — ié’_a,_b) (4.2)
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After substitution for Z in this expression and algebraic manipulation that is lengthy but
straightforward, we obtain the final relation

ALapy = (Hap + H_n—) (Kap + K_o )
— (Hoyp— H_op) (Ko s — K_4p)
— (ﬁ—a,—b — I:Iab)(f(—a,b +K —b)
- (ﬂ—a,b +H ,—b)(f(—a,—b - Kab)

(4.3)

Unlike the Hermitian relation, this expression does not require division of z;; into
regions.

6. Algorithm

Input: Two real M-by-N arrays z,y.
Ouput: The cyclic convolution z = z ® y
Complexity: O(M N log M N) real multiplications.

1) Compute the in-place 2D RVFFTs or FHTs of z,y to give X,Y or H,K. That is,
compute the 1D transforms of all the rows followed by the 1D transforms of all the columns.

2) Perform the appropriate dyadic multiplications. For the RVFFT, use (3.2), (3.4), and
(3.7) on the appropriate regions of the transformed arrays. For the FHT, use (4.3) for the
entire arrays. That is, compute

Z=XQ®Y (6.1)

or R R R
L=H®K (6.2)

3) Compute the inverse RVFFT or FHT to give z:
z=RVFFT!(Z) = FHT (). (6.3)

For optimal memory efficiency, the values for Z or L can be computed in place by
overwriting the values for Y or K.

6. Speed and memory

As with standard 2-dimensional Fourier transforms, one can calculate either the
RVFFT or the FHT by doing all rows in place, then all columns in place. After do-
ing thus for each of two signals x, y to be convolved, one invokes the dyadic multiplication
of the appropriate form. The key to memory efficiency is: this dyadic multiply can be
done “in-place.” That is, the 2-dimensional transform of ¥ can be used to store the dyadic
product, term by term. (One may access four elements of y’s transform at a time, and
the corresponding four of z’s transform, then lay these back down after the multiplication
algebra, onto the y array.) Finally, one does all columns of y in-place, then the rows;
whence y has become the required cyclic convolution.

5



We tested implementations of the RVFFT and Hartley schemes on a DEC Alpha
CPU. The RVFFT convolution was always slightly faster, though the Hartley, in being
somewhat more memory-cache friendly, might perform better on other machinery. The
standard DFT is between two and three times slower than either RVFFT or FHT and uses
twice the memory to store the redundant imaginary parts of the arrays.

A commercial implementation of the schemes described herein is available as the
software release
science2/transfor/fft

from Perfectly Scientific, Inc., Portland OR, located at
http://www.perfsci.com/.



