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Abstract. Real signal floating-point cyclic convolutions of length N = 3n = 3 x 2% can be
performed with three real-signal FFT-based convolutions each of length n, or alternately
with one real-signal and one complex-signal convolution, each of length n.
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1. Theory

Let N = 3n = 3 x 2. One way to perform cyclic convolutions of such a length is to
simply invoke a discrete Fourier transform (DFT) of length N, applying it three times in
the following standard way: Let x = {xo,x1,...,2n_1}, with similar notation for y, and
define the DFT of x as

N-1
DFT(z)x = & = Z xj exp(—wmijk/N), (1.1)
§=0

with ¢ denoting in turn the DFT of y. The inverse DF'T is then

N-1

) dpexp(+2mijk/N). (1.2)
k=0
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As is standard, the cyclic convolution of length N, namely

@E®Ym= D Tiyk (1.3)

j+k=m(mod N)

can be obtained as
r®y=DFT™ (i), (1.4)

where z7) is the dyadic, or element-wise product.

One drawback of this standard approach is that a length-3n FFT may not be available,
as most implementations of the FFT require input of length 2¥. We describe next an
approach that uses only length-n FFTs. Not only are all signal lengths powers of two, but
there are evident memory advantages, because the convolution problem is being broken
up in to pieces.

An idea of J. P. Buhler is to start with the old notion (dating back to the seminal
work of Winograd) that cyclic convolution is equivalent to polynomial multiplication, and
use Chinese Remainder ideas for polynomials to reconstruct the final convolution. His
new extension is to combine this approach with the disrete weighted transform (DWT) of
Crandall and Fagin. Let the polynomial associated with signal  be defined as

x(t) =xzo+ it +2ot> 4+ ...+ zy_ 1tV L (1.5)
Then the cyclic convolution can be written simply as
(z ®y)(t) = =(t)y(t) (mod(t™ — 1)). (1.6)

When N = 3n, and a non-trivial cube root of unity is available, we can factor ¢tV — 1,
whence it is enough to know the three polynomial products

z(t)y(¢)(mod(t™ — 1))
z(t)y(t)(mod(t" — w)) (1.7)
z(t)y(t) (mod(t" — w?)).
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The first of these three parts can be calculated as a cyclic convolution of the reduced length
n, while the other two can be obtained via two DWT’s, each of length n. The DWT idea
works a follows: In general, the expression

z(t)y(t) (mod(t" — A™)) (1.8)

can be obtained from the weighted convolution defined on signals z,y, now of reduced
length n:

1
TR Y = _(a'r@ay)v (19)
a

where the weight signal a is given by
a={1,A, A% .. A"}, (1.10)

and signal products such as ax are dyadic products, with the inverse signal 1/a being the
elementwise inverse.

These observations, together with Chinese Remainder reconstruction formula after
the three length-n convolutions, are enough to establish an explicit algorithm.

2. The algorithm

In what follows, we use the assignment
A = exp(—2ni/3n) (2.1)

to generate the relevant weight signal. Note that w = A™ is a non-trivial cube root of
unity.
Algorithm

Input: Signals z,y, each of length 3n.
Output: The cyclic convolution z ® y.

1) Create the weight signal a = {1, A, A%,... A"},
2) Contract signal z into the length-n signal defined as

T = Tj+ Tjin + Tjgon, J=0,1,...,n—1, (22)

and contract y similarlly into y’.
3) Use real-signal length-n FFTs to compute the convolution

¢ =DFT (zy). (2.3)
4) Contract signal z into the length-n signal defined as
"

T =33j—|—wxj+n—|—w2xj+2n, j=0,1,...,n—1, (2.4)

and contract y similarly into y”.



5) Multiply dyadically the weight signal a times z'" and 3", and use complex-signal FFTs
and a final signal inversion by a to obtain the DWT:

1 ————
d = —DFT '(az"ay"). (2.5)
a

6) Construct the final cyclic convolution as the real-valued signal of length 3n formed as a
union of the three length-n signals:

1 n—
TRY= g{{Cj + 2Re(d))}] =y,
{c; — Re(d;) — vV3Im(d;) }1 =y,
{¢; — Re(dy) + V3Im(d;)}755} (2.6)
This procedure is formally equivalent to the standard, length-3n FFT approach. Here,
however, all FFTs are of length-n, which reduces memory consumption. In addition, the
algorithm may be modified in order to find the complex convolution d via real-valued
FFTs, resulting in a slightly more complicated expression for the final union of Equation
2.6.
3. Mathematica implementation
A working Mathematica implementation of the length-3n algorithm (only a dozen or
so lines of source text) is available by e-mailing the author at “crandall@reed.edu”.
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