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Abstract. The Madelung constant-essentially the Coulomb energy density of a crystal-is 
usually calculated via Ewald error function expansions or, for the simpler cubic structures, 
by the ‘cosech’ series of modern vintage. By considering generalised functional equations 
for multidimensional zeta functions, we provide explicit expansions for the spatial potential 
and energy density of three-dimensional periodic structures. These formulae, involving 
only elementary functions, are suitable for systematic calculation of Madelung constants 
of arbitrary point-charge crystals. We indicate how zeta function relations may be used 
for dimensional reduction of certain multiple sums arising in the special cubic cases. 

1. Introduction 

The problem of computing the electrostatic potential energy density of a crystal has 
occupied researchers for over seventy years (Madelung 1918, Sherman 1932, Born and 
Huang 1954, Hautot 1975, Zucker 1976, Glasser and Zucker 1980, Borwein et al 1985). 
Closed form evaluations of the triple sums that define the Madelung constants of 
crystals are perhaps out of the question. The most common method of computer 
calculation of these numbers is due to Ewald (1921) and involves rapidly converging 
triple sums of error function terms. More recently Hautot (1975) and Zucker (1976) 
have established elementary ‘cosech’ double sums for cubic crystals. Crandall and 
Delord (1987) provide generalised double sums for arbitrary point-charge crystals and  
non-alternating summations suitable for deriving bounds on Madelung constants. 

Both the Ewald triple sums and cosech double sums have drawbacks for actual 
calculation for general crystals. The Ewald sums use various error functions whose 
computation can be unwieldy, especially if high precision is desired. The double sums 
for cubic crystals can be quickly implemented, but for general crystals these formulae 
are complex. In the present paper we develop triple sums for the spatial potentials 
and Madelung constants of arbitrary crystals. These arise from generalisation of the 
functional equation approach implicit in Ewald’s work and in much of the literature. 
This analysis will, for arbitrary three-dimensional crystals, provide expressions that 
converge rapidly, are easy to implement and involve only elementary functions. 

The celebrated Madelung constant for the NaCl crystal is given formally by a triple 
sum of Coulomb terms. If the charge at a lattice point (U, U, w )  of integers is 
then the Madelung constant is 

0305-44701871 165497 + 14$02.50 

-1.747 564 594 633 182 190 636 
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where the prime on the summation signifies that the singularity at (0, 0,O) is avoided. 
The spatial potential V ( x ,  y ,  z )  is given by a similar formula, with denominator 
[(U - x)’+ ( U  - Y ) ~  + ( w  - z)’]”* and prime removed. The number MNaCl thus rep- 
resents the potential seen by the origin charge with self-potential removed. 

The convergence of such sums is problematic. The sum (1.1) clearly does not 
converge absolutely and, in fact, is not convergent if the summation is done by taking 
all terms within a given radius and then letting the radius go to infinity. Although the 
summation can be defined rigorously (Borwein et a1 1985, Crandall and  Buhler 1987) 
the sum then converges far too slowly for practical purposes. It is standard to apply 
certain integral transformations to this sum to get multidimensional zeta functions. 
We shall generalise the usual functional equation for these zeta functions; this gives 
an  expression for the Madelung constant of an  arbitrary crystal as a sum of quantities 
J (coming from the ‘jellium’ potential), with J having the general form 

J=P+Z; ,+X. ,  (1.2) 

where P involves ‘polar’ terms. The sums X F  and XG are similar to the original sum 
for M except that each term contains a multiplier involving a function F or a function 
G that guarantees rapid convergence. The function G is a cosine transform of the 
derivative of F. The choice of F, subject to certain general properties, is arbitrary. If 
F is an error function then the classical Ewald sum is obtained. By trying other 
expressions for F we obtain formulae involving only elementary functions. For 
instance, in the NaCl case a certain choice for F will yield 

( - l ) z c ~ ( l  - tanh Alul) 
MNacI = -A + c’ 

“ E Z ’  IUI 

2.rr cosech(.rr21ul/2h) 

lul 
+y c 

“ C O ’  

(1.3) 

where 0’ denotes all triples of odd integers, A is an  arbitrary positive real number and 
IuI is the length of a 3-vector U. In the limit of vanishing A we obtain the original form 
(1.1). The sums for arbitrary crystals are not substantially more difficult. This means 
that relatively simple programs, requiring only the input of fundamental crystal para- 
meters, can quickly calculate arbitrary Madelung constants. The corresponding 
expression for the spatial potential at a point V ( x ,  y ,  z )  within the NaCl crystal is 
somewhat more complicated than (1.3) but still involves the same elementary F and 
G functions. 

It should be mentioned that various cosech sums as in (1.3) for certain values of 
the free parameter A are known in closed form, or at least as one-dimensional cosech 
sums. Such evaluations present some hope for sharper approximation methods in the 
Madelung problem. We take up  this subject within the context of dimensional reduction 
of zeta functions. 

2. Crystal nomenclature 

We shall take the general point-charge crystal to be defined by a 3 x 3 real matrix A 
such that the general lattice site is 

p = A u  U E Z’. (2.1) 
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The volume of one lattice cell is det A. We denote the reciprocal lattice matrix B = A-r 
(where - T is the inverse transpose). At each lattice site we assume there is an  assembly 
of m point charges. Thus there is a collection of distinct offset vectors d, such that 
the point charges in our crystal may be denoted q,, residing at positions 

P + d ,  (2.2) 

for j = 0,1,. . . , m - 1. In order to obtain finite Madelung sums we must assume that 
the overall crystal is neutral, i.e. that Z q, = 0. 

In summary, our crystal is defined by a matrix A, a collection of offsets do,  . . . , d, , - i  
and a collection of charges qo, . . . , q m - , ,  subject to the conditions that the dJ be distinct 
and the sum of the qJ is 0. 

Some examples for common crystal structures are as follows. 
CsCI: m =2, A is the identity matrix, the offsets are do=O,  d l  = (i , ' >, I 2)  and the 

ZnS: m = 2 ,  
charges are qo = 1, q1 = -1. 

the offsets are do = 0, d i  = (i,  i ,  i) and the charges are qo = 1, q l  = -1. 
NaCl: m =2, A is the same as for ZnS, the offsets are do=O,  d ,  = (1, 1, 1) and the 

charges are qo= 1, q ,  = -1. 
In fact this representation of a crystal is not unique. For instance, in the case of 

NaCl one may devise a representation in which m = 8, A is twice the identity matrix, 
and the off sets are eight binary vectors, ordered lexicographically, with corresponding 
q j :  (1, -1, -1, 1, -1, 1, 1, -1). This m = 8 representation is often the easiest to work 
with, chiefly because the A matrix is so simple. In fact, results such as (1.3) can be 
derived by summing eight values of a J function, as we shall see. 

We formally define the Madelung constant for a general crystal to be 

while the spatial potential at a vector x is 

(2.3) 

We shall consistently use a prime on summations such as (2.3) to denote that any 
infinite summands are ignored. This rule is not equivalent to simple removal of U = 0 
terms. The sum for M has the natural physical interpretation as the electrostatic 
potential energy density of the crystal. (Note that this explains the denominator det A.) 
Other definitions of M, such as Sherman's (1932), are consistent with (2.3) for simpler 
crystals, and in any case are proportional to M for more complex structures as discussed 
in Crandall and Delord (1987). 

3. Zeta functions 

In order to give a more workable definition of M (i.e. as a quickly convergent sum) 
we employ the usual technique of analytic continuation. 
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The core of the above expression for M is the function 

(3 .1)  

For x not equal to any d k ,  this function may also be used to calculate (the finite value 
of) V ( x ) .  This potential J A  arises from a charge of + I  at each lattice site Au and 
clearly cannot converge. However, the sum 

C’ IAu-xJ-“ (3.2) 

converges for complex numbers s whose real part is larger than 3. It turns out that 
this sum has an  analytic continuation to all complex numbers s Z 3. Thus we have a 
function defined by 

C E ~ 3  

(3.3) 

where I denotes the analytic continuation. This function will turn out to have physical 
significance. 

More generally, we consider multidimensional zeta functions (Glasser 1973, Zucker 
1976, Terras 1985). Let s be a complex variable, A a non-singular real n x n matrix, 
and c and d be real n-vectors. Define 

Z A (  S )  = Z A (  S; E, d )  = 1’ exp(2 r i c  * Au)lAv - dl-’. 
V € Z ”  

(3.4) 

We adopt the convention that if the A is omitted from the notation then it is taken to 
be the identity matrix. Ultimately we shall be interested in the physical case n = 3 but 
the general theory is uniform for arbitrary n. Also we note in passing that for n = 1 
the usual Riemann zeta function is given by ((s) = $ Z ( S ;  0,O). Finally, we should warn 
the reader that many treatments have a -2s term where we have chosen to use -s. 

The sum (3.4) is absolutely convergent for Re ( s )>  n as can be seen by bounding 
the sum by an integral over R”. Define an extended zeta function by 

(3 .5 )  

It is a standard fact in analytic number theory that this function has an analytic 
continuation to a function that is analytic on the entire complex plane, except for 
simple poles at s = 0 and s = n. In  addition, the ‘functional equation’ 

AA(s; ~ , d ) = A , ( n - s ; - d , c )  (3.6) 

holds. This famous relation was discovered by Riemann in the case of the usual zeta 
function and was extended to more general contexts by Hecke and others. The analytic 
continuation and functional equation will be seen to be special cases of results given 
below. 

The Madelung constant can be rigorously defined in terms of the function ZA. As 
an example of the functional equation we note that 

fiA(S; C, d ) = ’ i ~ ( S ) = ( d e t  A)”’exp(-Tic* d ) T - ” ’ r ( ; S ) z A ( S ;  C, d ) .  

(3.7) 

where the matrix A is understood to be the identity matrix. Thus the constant can be 
cast in the form 

M , , , , = Z ( l ;  ( f , f , t ) , o ) = . r r - l 2 ( 2 ; O , ( T , Z , , ) )  I l l  
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where O3 denotes the set of 3-tuples of odd integers. Although s = 2 is closer to the 
half-plane Re(s) > 3 of absolute convergence than s = 1 this sum still cannot be used 
to calculate M,,,,-direct summation is not convergent. 

4. Jellium 

Recall that the formal sum for the function JA(x) was obtained by considering the 
Coulomb potential at a location x when each lattice point AV has a point charge of 
+ l .  It turns out that the analytic continuation 

corresponds to the physical situation in which, in addition to the point charges at the 
lattice points, all of 3-space is filled with a jelly of uniform charge density 

p -  = -(det A)-’. (4.2) 

It is precisely this charge density which gives an  overall neutral charge; this combination 
of point charges and uniform charge density is called jellium. 

One way to proceed is to solve the Poisson equation 

O‘JA(X) = -4r [p+(x )+  p - ]  (4.3) 

where p+ is the charge density of all the positive site charges (i.e. a triple sum of delta 
functions). The electrostatic solution is, for x not in the lattice AZ3, given by (Crandall 
and Delord 1987) 

JA(x) = (r det A)-’ E‘ e x p ( 2 r i x .  B v ) ~ B u ~ - ~ .  (4.4) 
O F  Z ’  

The corresponding special case of the general functional equation (3.6) then shows 
that when x is not in the lattice AZ’ then (4.4) and (4.1) are identical. If x is not in 
the lattice A Z 3  then the sum (4.4) is oscillatory and can be verified to converge in 
some appropriate sense (Crandall and Buhler 1987). If x is in the lattice A Z 3  then 
(4.1) is taken to be the definition of the jellium potential. (The apparent contradiction 
between the non-convergence of (4.4) in the limit as x approaches 0 and  the smooth 
behaviour of the analytic continuation (4.1) is spurious; the summation and limit 
operations d o  not commute!) The value when x is in the lattice represents the potential 
as seen by the charge at the lattice point x with self-potential removed. In a curious 
fashion the zeta-function analytic continuation machinery removes the singularity 
resulting from the self-potential. 

Recall that the general Madelung constant (2.3) is a superposition of jellium 
potentials: 

M = ( d e t A ) - ’ C  q,qkJA(d,-dk) 
1. k 

while the spatial potential is a similar superposition: 

(4.5) 

This is reasonable-the Madelung constant is essentially a sum over one charge 
assembly of the potential energy binding that charge to the rest of the lattice. Since 
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each charge sees a finite superposition of m jellium constructs, the binding potential 
will be a superposition of jellium potentials. The introduction of the uniform charge 
jelly does not matter in the final analysis, since the neutrality condition on the crystal 
charges implies that the sum of the m signed jellies vanishes. 

5. The functional equation 

The goal of this section is to derive a generalised form of the functional equation that 
is suitable for efficient computation of the Madelung constants. We will consider the 
zeta functions defined above and will later consider the special cases relevant to the 
Madelung problem. Though much of the following treatment is reminiscent of previous 
work (Glasser and Zucker 1980, Nijboer and de  Wette 1957, 1958, Chaba and Pathria 
1975, 1976a, b), we have included details in order to motivate our generalisation of 
the standard analysis. 

Let A be a non-singular n x n real matrix and  let B be its inverse transpose. These 
matrices will play a dual role throughout; the functional equation relates a zeta function 
attached to A to a zeta function attached to B evaluated at a mirror image point. Fix 
real n-vectors c and d ;  these will also play a dual role and will sometimes be omitted 
from the notation. Define, as above, the zeta function of A to be a function of the 
complex variable s by 

(5.1) 

The prime on the summation of course just means that the vector o (if any) with Ao = d 
is omitted from the summation. It is a standard fact that this converges to an analytic 
function for Re(s) > n. 

The central idea of the proof of the functional equation is to realise the zeta function 
as a Mellin transform of a theta function and to apply Poisson summation to the theta 
function. The generalised theta function that we need to consider is 

Z A ( s ;  C, d ) = Z A ( s )  = c' exp(2.rric.Ao)lAo-dl-'. 
L l t  Z "  

BA( t )  = E' exp(2.rric. Ao)f( tlAo - dl) (5.2) 

where t is a positive real number and f is a smooth real-valued function that decreases 
exponentially so that the sum converges for all t .  The usual theta function considered 
in this context is f ( t )  = exp(-.rrt'). Later we will see that other f can be useful. The 
idea of allowing arbitrary 'Schwarz-Bruhat' functions f is certainly not new; a very 
general formulation in a number theoretic context is given by Tate (1968). 

V € Z "  

The last function that we shall need is the partial Mellin transform o f f  

F ( s , x ) =  [ x w f ( t ) t ' - l  d t  (5.3) 

where x is a non-negative real number. I f  x is positive then the exponential decrease 
off  guarantees that F exists for all complex s and  that it is exponentially decreasing 
as a function of x; if x = O  then the integral converges at least for Re(s)>O. 

By interchanging integration and summation one easily shows that the Mellin 
transform of the theta function is essentially the zeta function: loz @,( t ) t " - 'd t=  c' exp(2.rric-Ao) f ( t lAo-d l ) t ' - l d t  

V € Z "  lo' 
= E' exp(2.rric.Ao)(Ao-dl- '  j o z f ( t ) t ' - '  d t  = F(s ,  O ) Z , ( s ) .  (5.4) 

V . Z "  
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Our general strategy is to choose an  arbitrary positive number A and to write the 
integral on the left as 

X 

@ A ( f ) t ' - '  d f + [  @A(t ) f" - '  dt. 
A 

(5.5) 

This fundamental idea is due to Riemann. The second integral is straightforward; 
interchanging the summation and integration as above gives 

@ A ( t ) f ' - '  d t =  e' exp(2ric .Au)lAu-d(- 'F(s ,  AIAu-dl ) .  (5.6) 

This is identical to the original summation (5.1) except that an  exponential decreasing 
'convergence factor' has been introduced. 

The next step is to derive a similar expression for the first integral in (5.5). The 
general idea is to change variables in the integral by replacing t by t - '  and to use 
Poisson summation in the summation defining @A( t ) .  

In the following let 6, be 1 if the vector d lies in the lattice A Z "  and 0 otherwise. 
In order to apply a Poisson summation it is necessary to have an  unprimed sum 

@ A ( t )  = -f(o) e x p ( 2 r i c .  d ) 6 , +  exp(2 r i c .  Au)f(flAu-dl). (5.7) 

Applying Poisson summation and writing the Fourier coefficients out explicitly gives 
OA(t) = -f(O) exp(2.rric. d )6 ,+de t  B exp(2 r i c .  d ) t - "  

V € Z "  

O C Z "  

exp( -2 r id*  Bw) 
WtZ" 

x J exp[2 r i t - ' u -  (-Bw+c)]f(lui) d"u. 
R" 

(5.8) 

To simplify the notation define a function g by 
r 

Since the integral on the right only depends on IuI this is valid; by standard arguments 
g is in fact a Bessel transform of 1: The expression (5.8) can now be rewritten 
@ A ( r ) =  -f(O) e x p ( 2 r i c .  d ) 6 , + d e t  B e x p ( 2 r i c .  d)r -"  

x exp(-2riBw * d ) g (  rC'lBw - c / ) .  (5.10) 

In order to integrate this we need summands that decrease exponentially in t ;  to ensure 
this the possibility Bw = c has to be handled separately: 
@ A ( ? )  = -f(O) exp(2.rric. d ) S ,  +g(O)tC" det B& exp(2.rric. d )  

W € Z "  

+det  B exp(2 r i c .  d ) r - "  e' exp(-2riBw. d)g( r - ' /Bw-c l )  (5.11) 
W C Z "  

where S2 is 1 if the vector c is in BZ"  and 0 otherwise. 

(5.11): 
Now we can calculate the first integral in (5.5) by changing variables and applying 

joA @ A ( t ) t ' - '  d t = I A Y l  @~(t-')t-'-' d t  

A '  A ' - ' I  
= -f(O) e x p ( r i c .  d )6 , -+g(0)  det B6,-exp(2ric. d )  

S s - n  

+det  B e x p ( 2 r i c .  d )  c' exp( -2 r iBw-  d )  g(t/Bw-cl)t"- ' - l  dr. 

(5.12) 
W t Z "  
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Note that the integrals in the polar terms were explicitly evaluated using {: tC- '  d t  = 
a - ' / s  which is valid for Re(s)>O; it follows that the preceding formula is valid for 
all s with Re(s) > n.  

Now let G be the partial Mellin transform of g. A simple change of variables in 
(5.12) together with (5.4)-(5.6) gives us our central formula 

A S  A " - "  
S n - s  

F ( s ,  O ) Z A ( s )  = -f(O) exp(2.rric. d ) a , - - g ( O )  det BS2-exp(2nic- d )  

+ c' exp(2nic * Au)(Au - dl - 'F(s ,  A IAu - d / )  

+det B e x p ( 2 ~ i c .  d )  c' exp(-2nid.  Bw) lB~-c l - ( " - ' )  
U €  z" 

W € Z "  

xG(n-s,A-'IBw-cl).  (5.13) 

Note that although the left-hand side has only been defined for Re(s) > n the right-hand 
side is an analytic function for all complex s except s = 0 and s = n. This provides 
the analytic continuation of ZA promised earlier. 

Observe that there is a certain duality between the two sums. The first is formed 
from f and A and the second is formed from g and B after also interchanging c and 
-d, s and n -s, and A and A - ' .  To exploit the duality further let us take the special 
case in which A = 1, f (x )=exp( -nx2) .  An easy calculation shows that F ( s , O ) =  
n T(s/2) and that in general F is an incomplete gamma function. A somewhat 
harder calculation shows that in this case g ( x ) = f ( x ) .  Now multiply both sides of 
(5.13) by (det A)"'exp(-.iric. d ) .  The left-hand side is then 

- s J 2  

A A ( s ;  c, d )  = (det A)"'exp(-nic. d ) . i r - " ' r ( s / 2 ) z A ( s ;  c, d ) .  (5.14) 

Upon examination one finds that the resulting right-hand side is 

A B (  n - S; -d, c). (5.15) 

This establishes the functional equation (3.6) stated above. From the simple pole 
structure of (5.13) when s = 0, one may infer the exact value ZA(O; c, d) = - 8 , .  For 
the Riemann zeta function in particular, this gives the value c(0) = - $ .  

The Gaussian f ( x )  = exp(-nx') is the only function that we know for which the 
formula (5.13) can be made reasonably explicit for arbitrary n and s. In the next 
section we will see that for n = 3 and s = 1 there are other useful .f to be considered. 

6. Explicit formulae for the Madelung constants and spatial potentials 

Now we return to the jellium potential for the physical case s = 1 in n = 3 dimensions 

(6.1) 
In  formula (5.13) take n =3, c=O,  d = x ,  and s = 1. Since s is fixed we shall write 
F(1, x )  = F ( x )  and G(2, x )  = G ( x )  for the sake of simplicity. The result is 

JA(x) = .?A( 1; 0, x).  
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where the function F is 

F ( x )  = f ( t )  dt. 

The calculation of G is more involved; convert the integral in the definition of g to 
spherical coordinates and use the Riemann-Lebesgue lemma to evaluate the integral 

(6.4) 
A 

G ( x )  = lim I g ( t )  dt. 

G ( x ) =  6' l O x f ( r )  cos(27rrx) dr. 

A - x  ~ 

The result is that G is essentially the cosine transform o f f :  

(6.5) 

I f f  is chosen to be of the Gaussian form exp(-cx') then it can be checked that F 
is an incomplete gamma function and that G is also Gaussian. We would like to find 
f such that both F and G can be evaluated explicitly in terms of elementary functions. 
There seems to be a number of such J: Two examples are 

f ( x )  = sech(x) f ( x )  = sech2(x). (6.6) 

The resulting functions decay exponentially and give expansions for the jellium poten- 
tial, and hence arbitrary Madelung constants, entirely in terms of elementary functions. 

The second choice o f f  seems to be slightly better in practical terms. Simple 
calculations then show that 

F ( x )  = 1 - tanh(x)  (6.7) 

and 

G ( x )  = 7rx cosech( .rr2x). (6.8) 

Now an explicit version of the jellium representation (1.2) may be written as 

ir3 1 - tanh( A (Au - dl )  
J , ( d )  = -A6, -7 det B +  1' 

6A v c z '  IAu - dl 

A W' i z ' lBwl 

exp( -2xid  - Bw) cosech(A - ' l B w l ~ ' )  
+ I d e t 6  E' (6.9) 

One may use this expansion together with (4.5) and (4.6) in practical computations. 
When using this general prescription for Madelung constants or spatial potentials, one 
may simplify by exploiting certain symmetries. For example, the second polar term 
amounts to a correction for the negative jelly, independent of any d or q values. Either 
sum (4.5) or (4.6) will, as indicated previously, receive no net contribution from the 
term. Similarly, the first polar term vanishes for any computation of the spatial 
potential, since the argument of J is to be non-zero in such cases. 

This unified computational scheme requires only the crystal parameters as input. 
Moreover the freedom to vary the parameter A has been found to be very useful; if a 
program generates the same numerical value for two different values of A this is strong 
evidence that it is working correctly. The parameter can be interpreted as an inverse 
length scale, and as an  empirical matter the scheme (6.9) converges most quickly when 

A = (det A)-''3. (6.10) 
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Both limits A - 0  and A +CO are interesting in (6.9). For small A the tanh sum 
blows up  (being, in the limit, the formal defining sum for J A  with self-potential intact) 
and the cosech sum becomes negligible. However, the divergence is cancelled by the 
second polar term. Similarly, for large A the tanh sum is negligible and the cosech 
sum blows up; the resulting singularity is cancelled by the first polar term. Such 
behaviour may be verified by approximating the sums with integrals in the appropriate 
limits (Gradshteyn and  Rhyzik 1965). 

We also note that this uniform method of calculating Madelung constants and 
spatial potentials does not suffer from the complexity of the double sum cosech 
expansions in Crandall and  Delord (1987) which, for complicated crystals, can involve 
extensive combinatorics and matrix algebra. The double sums converge more quickly 
but (6.9) is easier to program. 

Note also that the scaling behaviour of the jellium potential is correct. The relation 
(6.9) is invariant under replacement of A by kA, d by kd, A by k-'A,  and J A  by k- 'JA. 
But this is reasonable: the Coulomb energy must scale as k- '  if all distances are scaled 
by k. 

Observe that (6.9) explains how analytic continuation removes singularities due to 
self-potential. Indeed, if we consider (6.9) in the limit as d + 0 then there is a leading 
term -A + 1dI-l arising from the tanh sum. But when d = 0 the tanh sum avoids the 
Coulomb singularity, while the polar term -Aa1 appears. This verifies what one expects 
of the jellium potential in the vicinity of, but not at, the origin: 

e x p ( 2 r i d  Bu) 
J A ( d )  = r-' det B c' 

U E Z i  lB4z 

- ldl-'+ r-' det B c' IBUI - ' / ,=~  = ldl-'+JA(0). (6.1 1 )  

These manipulations show explicitly that, whereas JA(d) ,  d # 0 is the jellium potential 
with origin charge included, JA(0) is the (finite) Madelung constant for the jellium 
construct. 

When the crystal has special symmetries, one may further reduce sums of J A  terms 
in the representation (4.5). For NaCl one finds that for any suitable function F having 
F ( 0 )  = 1, the three-dimensional result (6.2) yields 

" E L 3  

(6.12) 

of which (1 .3)  is the special case arising from the choice (6.7). The arbitrary nature 
of F is tantalising-one is tempted to find better examples of F, G pairs to approach 
the celebrated problem of closed form evaluation of M. 

It is even possible to choose discontinuous F functions if singular terms are properly 
handled. From the choice F ( x )  = 1 on x E [0, E )  and F ( x )  = 0 on x E [ E ,  00) we obtain 

(6.13) 

This sum, whose small E limit can be interpreted as (3.8), can be used to analyse the 
convergence of spherical lattice sums (Crandall and Buhler 1987). Such &-independent 
expansions also give rise to the non-alternating 'sine' series of Crandall and Delord 
(1987). 
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7. Dimensional reduction and cosech sums 

Our general prescription embodied in (4.5), (4.6) and (6.9) still involves triple summa- 
tions. Various authors have shown how Madelung sums for cubic crystals can be 
reduced to double sums. For instance, the formulae of Hautot (1975) for NaC1, ZnS 
and CsCl crystals involve only the cosech function. When A is the identity matrix, 
one may use a key identity, valid for 1x1 < 1, 

c exp(2 r imx) / (m2+a ' )  = ( r / a )  cosh(.rra(l-21xl)) cosech .rra (7.1) 
m a 2  

applied to a single integer summand, to reduce an n-dimensional zeta function Z(2 ;  c, 0) 
to an  ( n  - 1)-fold sum. More complex identities required for general matrices A are 
given by Crandall and Delord (1987) and  may be used to reduce arbitrary three- 
dimensional Madelung sums to double form. In  the present section we concentrate 
on the simple cubic cases to indicate how various Madelung sums may be reduced by 
one dimension. 

Cubic Madelung constants, as in (3.7), are characterised by A =  1 and  c, = O  or 1 .  
The constant will be Z(  1; c, 0) which is proportional to Z(2 ;  0, c ) .  Neither of these is 
quite the same as Z(2 ;  c, 0) which can be reduced through use of (7.1). We shall derive 
some additional zeta function relations connecting these various Z sums. Heretofore 
let c or d denote a binary vector consisting of zeros and ones. Then the extra relations 
may be used to reduce any of the following n-fold sums to ( n  - 1)-fold cosech sums: 

Z(  n - 2 ;  0, d /2)  

(7.2) 

Z (2 ;  0, d /2) .  

The first two forms will reduce directly by virtue of (7.1) and the functional relation, 
with the last two reducible via the new relations. The treatment is a generalisation of 
the work of Zucker (1976). As examples of the reduction we shall derive Hautot's 
NaCl formula and various cosech triple sum relations. 

Suppose that d is a binary vector. Then 

(7.3) 

where the coefficient a, is 0 or  1 according as to whether the vector w - d has all even 
components. In fact 

1 
2" L. 

a,, =- exp[ T ic .  ( w  - d) ]  (7.4) 

where the summation is over all 2" binary vectors c. Using this (7.3) can be rewritten, 
after a little manipulation, in the form 

Z(s;  0, d /2)  = 2'-" exp(-.rric* d ) Z ( s ;  c/2,0).  (7.5) 
C 
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This sum can be further reduced by using the d = O  case to obtain a formula for 
Z(s; 0,O) that can be substituted in the right-hand side of (7.5). The resulting formula 
is 

exp( - r i c  d )  +- 2 n - s  - 1 )Z(s;  c / 2 , 0 ) .  (7.6) 

It is evident that the last two forms of (7.2) may now be cast into ( n  - 1)-fold cosech 
forms. Noting that MNaCl = r - ' Z ( 2 ;  0, (1, 1, 1)/2) with n = 3, we obtain from (7.6) 
Zucker's formula 

C Z O  E (  Z(s; 0, d/2) = 2'-" 

Finally we apply (7.1) to the w summation to get Hautot's formula, essentially 

7T (-1)' cosech +rrr 
2 ( U , t . l E Z Z  r 

M = - - + 3  E' 

(7.7) 

(7.8) 

where r = (U' + u ' ) ' ' ~ .  
As a second example of dimensional reduction, we may consider n = 4 dimensions 

and define the sum U,, 0 s  k d 4, to be the zeta function Z ( 2 ;  c / 2 , 0 )  where the binary 
vector c has exactly k ones. Then the cosech formula (7.1) may be applied directly, 
for example, 

(7.9) 

with similar expressions arising for the other U functions. On the other hand, one 
may apply the reduction formula (7.6) with s =2,  n = 4  to obtain relations 

(7.10) 

The second of these yields a curious and apparently non-trivial identity 

cosech nr c' [1-3(-1)" +(-I)"" +(-l)u+L+"] = O  (7.11) 
i U , C , U I E Z 3  r 

where r z =  U ' S  U'+ w2. It turns out that all five U sums can be evaluated exactly, 
using previous results together with the relations (7.10). Zucker (1974, 1975, 1984) 
established that 

Uo= -8 In 2 

U, = - 2  In 2 

U, = -4 In 2 
(7.12) 

U ,  = ~ 1 2 - 1 1 1 2 .  

In  fact the last three of these can be used with the relations to obtain U,  and U 3 ,  the 
latter taking the value 

U , = - 7 ~ / 2 - - I n 2 .  (7.13) 
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One may now derive directly an important triple cosech identity of Zucker (1984). 
Define the general cosech sum 

cosech T X ~ U ~  

1 ~ 1  S ( x ) =  C' (7.14) 

Then manipulation of the odd integer indices results in the evaluation 

S ( 1 ) = ( U ,  - 3 U2 + 3 U3 - U4)/ 8 T = - + (3 In 2)/ 4 ~ .  (7.15) 

This evaluation is important in the present context because it removes one of the 
summations in the NaCl Madelung expression (1.3) if we set the free parameter/\ = ~ / 2 .  

One might look longingly at the cosech sum S(x) and observe from the elementary 
function expansion (1.3) that 

MNaCl= lim ( - A  + ( 2 r / A ) S ( r / 2 A ) ) .  (7.16) 
A - =  

Such an expression is perhaps a starting point for sharp representations of MNaC., . As 
S(x) is evaluated for smaller x, one has a more rapidly converging tanh sum in (1.3). 
It is possible to do better than (7.15); for example, Zucker (1984) has derived 

S(i) = 1 / a  (7.17) 

on the basis of Jacobi theta function analysis. We have been able to carry the analysis 
a little further, using the theta function identities of Glasser and Zucker (1980) to 
obtain closed-form evaluations 

X 

S (  1/&) = & (-1)"' cosech[ r( m +$)/a] = a O : ( x )  (7.18) 
m = O  

X 

S(a) =m C L,  c o s e c h [ r ( m + i ) / f i ]  = m 0 , ( x 2 ) 0 , ( x )  (7.19) 

where x = exp( - ~ / a )  and Lm is the sequence (1,1,  -1, -1, . . .) arising in the definition 
of the 0; function. Furthermore, these two S evaluations can be cast in the form of 
elliptic integrals, expressible in terms of such oddities as r(a) (Zucker 1984). The 
approximation to MNaCl arising from (7.19) thus has a triple tanh sum component of 
magnitude of the order of 4 x 

m = O  

8. Open questions 

Presumably it is possible to use zeta function relations such as (7.61, but for more 
general A matrices and c, d vectors, in order to obtain general two-dimensional sums 
similar to those of Crandall and Delord (1987). The relevant formulae will be very 
intricate and the difficulties to be overcome in developing a unified treatment of 
dimensional reduction remain unclear. 

As for the triple elementary function sum (6.9), there are natural questions concern- 
ing the rate of convergence. The basic formula (5.13) becomes the classical Ewald 
expansion iff  is chosen to be a Gaussian f ( x )  = exp(-rx')) .  In  this case both F and 
G decay 'doubly exponentially', i.e. as exp(-Cx'), with the constant C depending on 
the free parameter. 
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Our elementary function expansions such as (1.3) decay only as exp(-Cx). This 
leads us to ask whether there is a function f giving rise to elementary F and G but 
with more rapid decay. For ease of programming it would be useful to find a pair 
F, G such that 

%(x) = P ( x )  * G ( x )  (8.1) 

where P is some polynomial. If  this is possible, then one would expect optimal or 
near-optimal decay. Since G is essentially a cosine transform of F‘, typical ‘uncertainty 
principle’ arguments may well apply, and we expect that rapid decay in F will generally 
give rise to rapid decay in the transform G. 
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