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Abstract. The generalised Madelung problem, that of finding the spatial electric potential 
within a crystal lattice, is often approached via analytic function theory. But new results 
can be achieved through careful application of standard theorems from classical electro- 
statics. In this way we show that the celebrated Madelung constant for the NaCl crystal 
can be rigorously bounded through symmetry arguments devoid of summations. We derive 
new expansions for Madelung constants of general crystals: an absolutely convergent 'sine' 
series which has the advantage of non-alternating summands, and an 'exponential' series 
which agrees in the simple cubic cases with the 'cosech' expansions of previous authors. 
Finally, we show how the NaCl Coulomb singularity may be removed to yield a regular 
power series expansion for the potential well at the origin. 

1. Introduction 

The electrostatic potential at a vector x within a periodic point structured crystal is 
given formally by a sum over Coulomb terms 

where p generally denotes the location of point charge q( p ) .  We shall call this simply 
the crystal potential. A closely related construct describes the potential well in which 
a particular charge resides. This Madelung potential, indexed by some point charge 
location r, is given formally by a sum in which the self-potential of the reference charge 
is removed: 

V J X )  = ~ ( x ) - q ( r ) l r - x l - ' .  

The electrostatic energy binding a particular site to the rest of the crystal is thus 
q( r )  V , ( r ) .  This potential can be used to determine the electrostatic potential energy 
of the crystal. When the crystal is structured generally as a periodic lattice with identical 
charge assemblies at each lattice site, a Madelung constant can be determined by 
summing and normalising the potential energies associated with a single cell: 

M = v - '  q(  r )  Vr( r )  
r 

(1.3) 

where U is the volume of a lattice cell and r runs over the charge sites associated with 
one cell. This definition of the Madelung constant is consistent with traditional 
dimensionless ones (Sherman 1932), provided some lattice constant, such as unit 
nearest-neighbour separation, is enforced. We discuss later the relation of M to total 
cell energy and other crystal energy measures. 
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In the case of the simple cubic crystal NaCl we adopt the common convention that 
nearest-neighbour separation is unity. For this and  other highly symmetric crystals, 
M turns out to be the potential energy in which a unit origin charge resides. The 
Madelung constant in this case is just V,,(O), and can be written out as a Coulomb 
sum over integer triplets, with the origin taken as reference site: 

MNaC,= ( - l )m+n+p(m2+n2+p2)-”2 .  
m.n,pfO 

(1.4) 

The difficulty in performing this and similar sums is well known, having occupied 
various researchers for more than seventy years (Madelung 1918, Ewald 1921, Born 
and  Goppert-Mayer 1933, Born and Huang 1954, Glasser and Zucker 1980). Numerical 
values can be computed from transformations of (1.4) having exponentially decaying 
summands involving only elementary functions (Hautot 1975, Zucker 1976). General 
crystal sums suitable for computer work will appear later in this treatment. We compute 
the NaCl case as 

MNaCl = -1.747 564 594 633 182 190 636 
(1 .5 )  

212035544397403485161436624741758152672 . . .  
presumed correct to 50, and possibly 60, places. 

A simple thought experiment using fundamental electrostatic principles can relegate 
the NaCl Madelung problem to the confines of a finite space. We shall find that a 
bound on the Madelung constant M for this problem 

(1.6) 
can be obtained ‘in one’s head’, without recourse to infinite summations. Using the 
principles in conjunction with a previous result for the NaCl crystal potential, namely 
(Forrester and  Glasser 1982) 

(1 .7 )  

M - -45 (1.8) 
which is in error by only one per cent of the value (1 .5) .  

Using such principles with proper precision we can deduce some striking exact 
relations. We shall show that for any f in the interval (0 ,  l ) ,  the Madelung constant 
M for the NaCl crystal can be obtained from a non-alternating absolutely convergent 
series 

-2 < M < -(4/3)”2 

V(d, A, A) = JS 
one can obtain, again with virtually no calculation, a fair estimate 

8.rr-3 sin2( mt/2)/r4 = t + Mt2/2 (1.9) 

where the sum is taken over all distances r from the origin to odd integer triplets. We 
still do  not know just how much one may discover about M by exploiting the free 
parameter 1. But certainly this kind of series, with its lack of alternating signs, can be 
used to provide rigorous bounds tighter than (1.6). 

We eventually arrive at efficient expansions for the various electrostatic quantities. 
These expansions are reminiscent of previous work (Zucker 1975, Glasser and Zucker 
1980) on cubic crystals but can handle general crystals. In  particular we derive the 
spatial behaviour of the potential well V,(x) in which the (positive) origin charge of 
NaCl sits. We provide formal expressions for the coefficients of the axial expansion 

(1.10) V,(x, 0,O) = M + ax4 + bx6+.  . . . 
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It is interesting that there is no quadratic term, as will follow again from electrostatic 
principles, so that the origin charge of NaCl sees at least a quartic, not a harmonic 
electrostatic well. 

We have used such expansions in computer programs which will compute general 
crystal potentials and Madelung constants. Besides generating values such as ( l s ) ,  
we have confirmed previous work (Hajj  1972) and  discovered, by numerical accident, 
some provable theorems concerning exact potential values. For the CsCl crystal, an  
exact value similar to the previous (1.7) for NaCl can be given at a particular point 
in space: 

V C , C , ( f ,  0,O) = 2. (1.11) 

We were given pause upon receiving the computed value 1.999 999 999 . . . , and indeed 
the exact value can be proved. There is also a similar result for a crystal consisting 
of parallel planes of like charge, i.e. the charge at  ( m ,  n, p )  is given by (-1)"'. For this 
case it turns out that 

(1.12) 

A method for establishing such particular potential values depends upon previous 
applications of Jacobi theta functions, as discussed in 0 7 .  

V ( 0 ,  0, ;) = 2. 

2. Crystal nomenclature 

Our general crystal is taken to be built upon a periodic Bravais site lattice generated 
by replicated non-coplanar basis vectors A , ,  A , ,  A3 such that the position vector for 
a lattice site (not necessarily a charge site) has three components 

PI = m , A , ,  +%A,,  + m3A3, m, E Z.  (2.1) 
Denote by A the matrix collection of all nine basis components. These components 
can be thought of either as spatial lengths, o r  dimensionless multiples of some lattice 
constant. Then for three columns m of integers we can write the general site column 
vector as 

p = A m  m E z3. (2.2) 
It should be noted that the volume of one  Bravais cell is given by the determinant, 
det A. It will be convenient to define the reciprocal crystal matrix whose basis com- 
ponents are essentially those of the reciprocal lattice: 

where -T refers to inverse transpose. Having defined the lattice, it remains to place 
at  every site an  assembly of point charges. We shall assume a neutral crystal, where 
at each site p we assemble n charges qj at positions determined by distinct fixed offset 
vectors d,: 

P + d, j = o , ,  . . n - 1 

where the neutrality condition is 

2 = O' 
The general crystal is thus defined by the quantities 

A,n, { d , : j = O  , . . . ,  n-l} ,  { q , : j = O  , . . . ,  n-1} 
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together with the constraint ( 2 . 5 )  and the distinctness of the dj .  Examples of this 
nomenclature for common crystal structures are 

CsCl: (2 .7)  n = 2, do = 0, d ,  = ( t ,  4, i), qo= 1,  q1 = - 1  

A=[: p) 
ZnS: n = 2 ,  do=O,  d ,  = ( f , f ,$ ) ,  qo= 1,  q,  = - 1  

A=(! p a) 
NaCI: n = 2, do = 0, d ,  = ( 1 ,  1 ,  l ) ,  qo = 1 ,  q ,  = - 1  

Equivalent form: 

n = 8, {d,:  n = 0, . , . , 7 }  = ordered set of eight binary triplets 

{ S i :  n = O , ,  , , , 7 } = { + 1 ,  - 1 ,  - l , + l ,  - l , + l , + l ,  - I}  

A = O  2 0 .  (: :i 
The second form for NaCl may seem unwieldy, but the simplicity of the A matrix 
represents a certain advantage in the analysis. 

The extension of the ideas herein to handle charge distributions, such as electron 
orbitals combined with point nuclei, is straightforward. Though our treatment does 
not go beyond the generality of the point-charge crystal, we shall indicate in what 
follows those junctures where charge distributions would be appropriate to introduce. 

We shall often perform summations where some singularity must be avoided. A 
symbol such as 

1’ 
m t S  

means to sum over all vectors m in the set S except to allow only finite summands 
(because of the ‘ superscript). Note that ‘ does not mean simply to avoid the zero 
element of S. A simple example of this singularity removal is as follows. Let 

be defined for real U, and denote by f( U )  the same sum but without the ‘ superscript. 
Now almost everywhere f= g, but whereas f ( u )  diverges for any integer value of U, 
the sum for g becomes just n’/3 at such U, because the diverging term 0-’ is to be 
removed. 
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At several points in our analysis we shall use the Poisson transformation method, 
which has enjoyed wide use in lattice summation problems (Hautot 1975, Zucker 1976). 
For suitable complex valued functions f defined on R', the transformation is 

(2.10) 

The integral is performed over a continuous 3-vector m even though the left-hand sum 
is over integer triplets. Here and elsewhere, a form such as mu is interpreted as a dot 
product. 

3. Electrostatics 

The above nomenclature will now be used to establish various electrostatic quantities. 
The crystal potential at any point x is obtained by summing Coulomb terms over each 
charge in the crystal, knowing that the vector from x to thejth charge at site ( m ,  , m,, m3) 
is Am + dJ - x: 

The question of convergence naturally arises, since for no crystal is the sum absolutely 
convergent. We do  not handle such questions here, referring the reader to other work 
on convergence theorems over polyhedral domains (Borwein et a1 1985) and Coulombic 
convergence corrections for spherical domains (Crandall and Buhler 1987b). At this 
point we indicate that if the charges were more general than mere points, the relevant 
spatial integrals must be used in place of the 4,. This crystal potential V diverges 
naturally as the position x approaches any charge location r = Am + dJ, with behaviour 

V ( x )  - qjIr - - X I - ' ,  (3.2) 

It is now evident that the Madelung potential (1.2) at any site is just the sum (3.1) 
with the first summation given a prime superscript. Accordingly, the energy density 
for the crystal is 

n - l  " - 1  .. . . .  . 
M = (det A)-'  e' qkqJIAm + dj - dkl- '  

m e Z ' k = O ] = O  

= (det A)-'  2. Mk 
k = O  

(3.3) 

where Mk = qkVdk(dk) represents the building energy for the kth charge of the cell. 
Expression (1.4) for the NaCl constant can be obtained directly from (3.3) together 
with the second definition in (2.7) for the crystal. 

The constant M is not to be confused with the total electrostatic energy per cell, 
which is given by 

(3.4) 

n - l  

=; 1 Mk 
k = O  

(3.5) 
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with the factor of arising from pairwise combinations for the Coulomb energy. The 
energy U depends via the A matrix upon the definition of the unit cell, whereas M is 
independent of the choice of A as long as the crystal structure is unchanged. Yet 
another measure of crystal energy is Sherman’s (1932) per ion measure, namely 
E = (2* U ) / n .  For example, across the two definitions of the same NaCl crystal in 
(2.7), U varies but M and E d o  not. Whetherto use U, E or M = 2U/de t  A = nE/de t  A 
depends upon context. For NaCI, using the first definition (2.7), we have n = det A = 2, 
so M = U = E in this case. If the second representation for NaCl is adopted, however, 
the cell has become larger since n = det A = 8, and we have M = E = U/4. For general 
crystals, one may avoid the issue of what measure is best by reverting to calculation 
of the separate ‘Madelung constants’ Mk to settle any energy problem involving the 
crystal. 

The electrostatic analysis begins with consideration of the exact charge density of 
the crystal, keeping in mind the potential law: 

V‘V(x) = - 4 r p ( x ) .  (3.6) 

The charge density is given formally by placing delta functions at all sites: 

p ( x )  =C 9, C a3(Am + dj - x ) .  
j m c Z  

This can be immediately Poisson transformed to give 

p ( x )  = (det A ) - ’ C  q, exp[-2ri(Bu)(d,  -x ) ] .  

(3.7) 

J U E Z ’  

Note that if the charges were spatially distributed and not mere points, then the 
transform can still be performed in principle, with a Fourier transform of the site 
charge density appearing in (3.8). 

Now the Poisson equation (3.6) can be solved by finding that summation whose 
Laplacian in x is proportional to (3.8). The difficulty is that in the resulting sum for 
V a denominator lBu12 causes the U sum to diverge at U = (0, 0,O). This can be traced 
to the requirement of crystal neutrality: the constraint (2.5) on the total charge actually 
removes this divergence. A way to solve this is to place a primed sum as the second 
summation in (3.8). This can be done with impunity, again because of the constraint 

Yet another equivalent way to cancel the infinity is to note that (3.6) can only be 
solved up  to the ambiguity of an  additive constant for V. As the ‘infinite constant’ 
obtained by direct solution is devoid of any crystal structure details, it can safely be 
removed. In any case we obtain a legitimate expression for the crystal potential: 

(3.9) 

This is valid for the general crystal, and forms the basis of many useful expansions. 
Such formulae are often derived in the literature by analytic continuation of Epstein 
zeta functions (Emersleben 19231, of which (3.1) and  (3.9) are complementary special 
cases. Such analytic methods give us (3.9) from (3.1) directly, but already in passing 
through the electrostatic considerations we see a portent of simple physical arguments 
to come. For the moment, we write out some examples of (3.9). For NaCl one obtains 

Zq,  = 0. 

V ( x )  = ( T  det A)-’ 1 q, E’ I B u / - ~  exp[-2r i (Bu)(d ,  - x ) ] .  
I u t z ’  
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This being a sum over odd triplets, the prime notation has been safely removed. For 
the CsCl crystal, the potential is 

(3 .1  1) 

where, again, the prime notation is not required since the U origin is ruled out. 
We shall make use of another principle of electrostatics as embodied in the Green 

theorem (Griffiths 1981) that for suitable functions V and W defined on and inside a 
closed surface S, 

[ ( VV2 W-  WV2V) d3R = [ ( W W -  WVV)d2R. (3.12) 

If V describes an electrostatic potential within a sphere S which happens to be devoid 
of interior and surface charge, then the choice W = 1/ R gives the familiar result that 
the value of V at the centre of S equals the average of V over the surface of S. Recall 
that the Madelung potential V, referring to charge site r is computed by ignoring q(  r ) ,  
so we conclude that V, may in general be computed as an average over a sufficiently 
small sphere centred at r. This principle will be used to derive formulae such as (1.9). 

volume surface 

4. Direct bounds 

Symmetry principles are directly applicable to simple crystals such as NaC1. As 
suggested by (1.4) or (2.7) the charge at a lattice point m is 

q ( m )  = ( - l ) m l + m z + m 3 .  (4.1) 
It is easy to see that each of the infinite planes x = 4, y = i, or z = is a surface of zero 
potential, for charge values are antisymmetric when reflected through such planes. 
Looked at from the point of view of the expansion (3.10), this phenomenon follows 
from the observation that the real part of e x p ( ~ i k / 2 )  vanishes for odd integers k. 
Therefore the unit cube centred at the origin with vertices (it, *+, if) is a closed 
surface of zero potential. This 'neutral cube' therefore represents a finite domain with 
known boundary conditions for which a complete solution to the electrostatic problem 
would yield also the Madelung constant for NaCI. 

The constant MNaCl can now be estimated in many ways. One has only to solve 
this problem: a solitary +1 charge resides at the centre of a grounded unit cube. What 
is the electrostatic energy of the configuration? This will be the Madelung constant. 
An equivalent question is: what is the interior surface charge density of the cube? Let 
U represent said density. Then clearly the surface integral of U will balance the origin 
charge: 

u d2a  = -1 (4.2) 
/cube 

while the Madelung constant will be the potential seen by the origin charge 

( u / r )  d'a = M.  (4.3) 

-1lrrn,"< M < -1Irmax (4.4) 

l'ube 

Evidently, then, M is bounded by the extreme possibilities for the integral (4.3), namely 
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where rmln,  rmdx are the minimum and maximum distances, respectively, from the origin 
to the cube surface. Immediate calculation of these radii gives the bound (1.6). 

A second way of analysing the neutral cube problem is to attempt to solve the 
Laplace equation for the Madelung potential 

V’V,(x)=O (4.5) 

subject to the boundary condition that the potential at a point on the cube surface is 
l/r. If one attempts an  eigenfunction expansion solution, one obtains the sum (3.10) 
or a transformation of same. But there are numerical methods for solving the Laplace 
equation. Performing a standard neighbour-relaxation pass of a 3 1 x 3 1 x 31 point cube 
yields a stable estimate at the origin of 

M,,o--1.748 7 9 . .  . . (4.6) 

Unfortunately such a method does not converge nearly as fast as the best exponential 
sums for M. 

Still another approximation method for NaCl is to recall the sphere-averaging 
theorem discussed after (3.12). Note on the basis of (1.7) and the coo_rdinate symmetry 
of the crystal that the eight points ( * A ,  * A ,  *{) all sit at the potential J3,It is reasonable 
to estimate that the crystal potential-on the sphere of radius 1/412, which passes 
through all eight points, is roughly J3. Thus for points x lying on that sphere, the 
Madelung potential is roughly 

- 
v,(x) - J3 - ]x i - ’  = -4’5 (4.7) 

and we obtain the estimate (1 .8)  for MNaCl.  
It is interesting that these arguments for the NaCl crystal appear not to extend 

readily to any other structure, not even the simple CsCl crystal. As in (2.7) we assume 
a positive origin charge. Analysis of the problem indicates that there is no finite neutral 
surface enclosing this charge. All that we have been able to show is that the crystal 
potential for CsCl vanishes on the six squares (thought of as wire frames and hence 
one dimensional): 

x = * a  IY I + I Z I  = f (4.8) 

with the remaining four obtained by permuting coordinates. This follows from sym- 
metry considerations applied to the sum ( 3 . 1 1 ) .  It is true that all points on all squares 
lie on the Wigner-Seitz polyhedron for the crystal, but alas that polyhedron is not a 
neutral surface. The result ( 1 . 1 1 )  was prompted by the numerical results obtained in 
the course of the futile search for a closed neutral surface. 

The NaCl estimate arising from (4.3) can be made more precise through more 
knowledge of the surface density u. Later results, such as formula (7 .1 )  for the exact 
Coulombic potential, yield an  exact description of the density on the neutral cube 
surface, where we may take x = $, y and z ranging from -4 to +f: 

1 
d y ,  z )  = -- sech rR/2  cos m y  cos r p z  

2 n, p odd 
(4.9) 

where R = (n2+p2)’”.  Application of the integral in (4.3) yields then a representation 
for the Madelung constant reminiscent of the Benson-Mackenzie sech’ form (Glasser 
and Zucker 1980). 
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5. Sine series for general crystals 

We may apply the sphere-averaging principle, as a special case of (3.12), to obtain an  
expression for the general Madelung potential at  a charge site r. In fact, if S is a 
sphere centred at  r with radius t ,  and there is no other point charge in S, then the 
Madelung potential is given by the surface average: 

V , ( r )  = (4rt2)-’  V , ( x )  d2x. J, 
Inserting the expansion (3.9) for the crystal potential we find 

(5.1) 

exp[-2ri(Bu)(dj - r ) ]  sin 2 ~ r l B u l  . (5.2) 
1 ~ ~ 1 3  

V,( r )  = -q( r ) /  t + (277’t det A)-’ qj E’ 
j U G Z ’  

This ‘sine series’ can be used to calculate Madelung constants via (1.3), although faster 
convergence can be realised by exploiting the freedom to choose t as long as t lies 
between 0 and  the distance from site r to nearest neighbour. Formal integration of 
(5.2) yields an  absolutely convergent series: 

exp[-2ri(Bu)(d, - r ) ]  sin2 rtIBu1 
tq( r )  + V,( r ) t 2 / 2  = ( 2 r 3  det A)-’ c q, E’ . (5.3) 

I u a z ’  1 ~ ~ 1 4  

The formal integration has not been justified, but (5.3) can be verified independently 
by Poisson transformation of the inverse quartic sum. The Madelung constant may 
now be obtained from the definition (1.3). Define, for a 3-vector m E 8 Z 3 ,  the Fourier 
transform of one charge assembly 

h ( m )  =c  q, exp(2rimdj).  
I 

(5.4) 

For highly symmetric crystals, h tends to have a simple evaluation. For the second 
definition of NaCl (2.7), h ( m )  = 8 if m E BO3, otherwise h (m)  = 0. Then for any t such 
that 

(5.5) 
J f k  

the Madelung constant M satisfies 

lh(Bu)12 sin’ rt lBul 
t det B q: + M t 2 / 2  = (277’ det A2)-’ 1’ 

!, u s z 3  1 ~ ~ 1 4  
(5.6) 

This general formula has the advantage of non-alternating summands. This means 
that during calculations one may always use the current partial sum to establish a 
bound on M .  I t  is tempting to integrate further, perhaps even arbitrarily, exploiting 
to the fullest the free parameter t .  This idea is best demonstrated by analysing the 
special case of the NaCl crystal. In that case, (5.2) reduces to 

r2( 1 + t M )  = 4 1 sin r t u / u i  
“CO’ 

(5.7) 

valid for O <  t < 1. I t  may seem at first that (5.7) is impossible, since the limiting value 
of the right-hand sum appears to vanish as t approaches zero. This is not so-the sum 
approaches r 2 / 4  in the small t limit, a phenomenon not uncommon in the world of 
Fourier series. Integration of (5.7) gives the claim (1.9), which is the NaCl form of (5.6). 
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By manipulating further integrals of (5.7) one can derive some interesting 
expressions, such as 

n4(Mt3/4+3t2/16) = 1 sin3 n t u / u 5  (5.8) 

valid for all O S  t <f .  This sine series converges yet more rapidly than (1.9), but we 
do not yet know how much information about the Madelung constant can be gleaned 
with such techniques. Still, one advantage of the general crystal expansion (5.6) is 
that, in spite of its formidable appearance and non-optimal convergence, it is the 
simplest formula we know of for reasonable computer calculation. Much more conver- 
gent formulae we describe later are harder to program. 

One may take2dvantage also of the positive definiteness of the summands in (1.9). 
If we take t = 1/43, for example, then (1.9) gives on the basis of the first summand alone 

M > 6(64K3/9-  1 /J3)  - -2.088 . . . (5.9) 

and for the other direction, 

t + Mt2/2 < 8 7 ~ - ~  u - ~  
u s 0  

(5.10) 

which when extremised in t gives M < -1.318 . . . . Of course, tighter bounds result 
upon more complicated analysis of the summands of (1.9). 

Bounds for general crystals can likewise be obtained from (5.6). For lower bounds, 
one may choose an integer triplet such that t = (21Bul)-’ satisfies the constraint (5.5). 
Then the right-hand side of (5.6) can be bounded below by a finite set of summands 
in the spirit of (5.9). 

6. Exponential series for general crystals 

Previous authors have found rapidly convergent ‘cosech’ series for the Madelung 
constants of cubic crystals (Hautot 1975, Zucker 1975, Glasser and Zucker 1980). We 
have extended this work to the general case, starting with the crystal potential (3.9). 
Transformation of this potential to an exponential sum is somewhat tedious, involving 
a straightforward geometrical series identity valid for positive y < 1: 

sinh(2my) exp[2nit(y - 1)]+sinh[2ns(l - y ) ]  exp(2nity) 
2(sinh2 7rs +sin2 nt) (6.1) - - 

where s, t are positive reals. The function f can be continued for negative y > -1 from 
the relation f(y) = f * ( - y ) .  The idea is to use this one-dimensional sum for just one 
of the components of the U triplet in (3.9), to obtain a two-dimensional sum having 
the exponential convergence properties. 

One hesitates to carry out the fundamentally asymmetrical calculations, especially 
when the lattice-defining matrix A enjoys no particular symmetry. But once a general 
formula is obtained, computer programs can take care of the numerical aspect. To 
this end we have worked out the generalised two-dimensional sum which agrees with 
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previous authors for the simple cubic structures. The result is as follows. Define a 
matrix D and, for a given 3-vector x, define a 3-vector h by 

D = B ~ B  

h = Bx. 
(6.2) 

Now choose some component of h, say hi ,  which is non-zero. There will be at least 
one such since the crystal potential will turn out to diverge if h=(O,O,O). Define a 
positive quadratic form R 2  acting on a select pair of components of a 3-vector m by 

The two components of m which appear in this form will be the summation indices 
for the final two-dimensional potential sum. Next, define 2-vectors c, H having 
components 

where j ,  k are chosen here such that i ,  j ,  k is a cyclic ordering of 1,2,3.  Now consider 
the function defined for 3-vectors x: 

J ( x )  = ( T det A)-’ E’, e x p [ 2 ~ i ( B u ) x ]  IBu / -~ .  (6 .5 )  
U € Z  

This function can be Poisson transformed via the identity (6.1) to give 

D,, d e t A J ( x ) =  7r(2hf-2/hI(+f)  (6.6) 
s inh(2~Rlh, l )  COS{~TN[H -(lh,l-  1) sgn(h,)c]) 

+sinh[2rR(1 -lh,l)] c o s [ 2 ~ N ( H  - c h , ) ]  
2R(sin2 ~ N c + s i n h *  rR) + 1’ 

N e Z 2  

where R = R ( N I ,  N 2 ) .  This expansion is valid for all x such that 0 < Ih,l< 1. The final 
step in calculating the crystal potential is to observe that 

n - 1  

V ( x )  = y qJ(x  - d,). 
j = O  

(6.7) 

In spite of the cumbersome notation, it should be clear that assignments (6.2)-(6.7) 
can be programmed with knowledge of the crystal parameters in (2.6). It is also evident 
that the summation in (6.6) has terms decreasing exponentially in either component 
of N. One may compute the crystal potential efficiently in this way, noting that in 
(6.7) the vector x should be taken to lie in the origin cell without loss of generality. 

To obtain the Madelung potential in reference to a site dk lying in the origin cell, 
one may subtract from V ( x )  the Coulomb term q k  I x - d k l - ’ .  If, however, one wishes 
to compute the limiting value of the Madelung potential as x approaches d k ,  it is 
necessary to perform further analysis. We shall not pursue the analytic theory for the 
J function here, but it is possible to establish an analytic continuation of J for zero 
argument (Zucker 1976, Glasser and Zucker 1980, Crandall and Buhler 1987a), 
giving a workable formula for the Madelung potential at site dk 
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where S runs over binary triples. Note that the prime superscript for the first sum 
rules out j =  k, while the prime in the second rules out 6 = ( O , O , O ) .  Thus the sums 
have n - 1 and 7 terms, respectively. 

General calculation of crystal potentials and Madelung constants is now possible 
with (6.2)-(6.8) and (1.3). We have used programs which accept numerical input of 
the general parameters (2.6) and have obtained precision such as that of (1.5) in this 
fashion. In addition, one may obtain the ‘cosech’ series formulae previously discovered 
(Hautot 1975) by algebraic manipulation of (6.8) and (6.6). 

The Madelung constant itself, which arises from (6.8) via (1.3), can be obtained 
in certain cases by appeal to a different method of subtracting the singularity in the 
limit of site approach. This is the method which will yield a power series expansion 
for the NaCl Madelung potential, and to which we now turn. 

7. The problem of the Coulomb singularity 

A method of handling the Coulomb singularity without recourse to analytic function 
theory is most easily demonstrated for the NaCl structure. The method yields a regular 
power series expansion for the Madelung potential near the origin. From the general 
formulae (6.6) and (6.7) for the crystal potential, one may deduce that for NaCl 

sinh rrR(1/2-(xl) cos m y  cos rrpz 
R cosh r R / 2  V(x ,y ,z )=2  c 

n,podd 
(7.1) 

where R = ( n 2 + p r ) l ” .  This expansion is valid everywhere within the (0, 0,O) lattice 
cell. Note that this exponentially convergent expression reveals immediately many of 
the properties we have discussed. For example, if any coordinate x, y ,  or z is *+ then 
V = O .  It is not so clear that V is completely symmetric under permutation of the 
coordinates, but such is true on the basis of the original sum (1.1). 

The Coulomb singularity is evident upon the observation that if (x, y ,  z )  represents 
a charge site, then the sinhlcosh ratio is not exponentially damped and the sum 
diverges. To obtain the Madelung potential, therefore, we must find an effective way 
to subtract from the sum (7.1) a Coulomb term. This can be effected with a useful 
Poisson identity. Let w be the 2-vector ( y ,  z ) .  Then 

a f (0.0) 

The first term on the right-hand side is a Coulomb term which has been separated off 
the right-hand sum; hence the omission of the a origin. I f  we identify the 2-vector U 

with the pair ( n , p )  from (7.1) we obtain an expression for the Madelung potential 
referred to the NaCl origin: 

(7.3) 
Evaluating this expression at the NaCl origin yields a previously known expansion 
for the Madelung constant (Hautot 1975): 

M N ~ C , = 4 ( 1 - ~ / 2 ) i ( f ) P ( ~ ) - 4  2 R - ’ [ l + e x p ( n R ) ] - ’ .  (7.4) 
n . p o d d  
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Here, the Riemann zeta and  beta functions appear due to the identity (Glasser 1973) 

E', (-l)ai+a2a-2r = 4 l ( s ) p ( s ) ( - 1 + 2 ' - ' ) .  ( 7 . 5 )  
a c Z -  

But (7.3) contains information also about the regular behaviour of the Madelung 
potential near the origin. In fact, one may use (7.5) and a binomial square root 
expansion to deduce an  axial series. Define the coefficients 

Ck = 4 (  - f )k (2k  - l ) ! !  ( -  1 + 2"2-k) l (  k +f )p (  k + i ) / k !  

(7.6) 

Then the Madelung potential along the x axis can be written in a power series 
X 

V,(x ,O,O)= C k X Z k  
k =O 

= - 1.747 564 59 - 3.578 5 8 2 ~ ~  - 0.989 4 9 9 5 ~ ~  
-2.942 1 5 8 ~ ~ - 1 . 0 1 0 7 1 3 ~ ~ " - 2 . 9 1 4  156xI2-1.171 4335xt4-.  . . . (7 .7 )  

The coefficient CO is just AINaC, as in (7.4).  The coefficient C ,  is interesting: it must 
vanish. This is because V 2 V  must vanish everywhere, and formally equals 3C, at the 
origin. This in turn provides an  interesting identity when we evaluate (7.6) for k = 1 :  

l(t)p(+) = r2(1 - 1/J2)-' c r2(n)J'i[l +exp(.irJn)]- '  (7 .8 )  
n = 2  mod8 

where r2(n)  is the number of representations of integer n as the sum of two squares. 
This result for the zeta-beta product at 1 has been derived previously (Zucker 1984). 

The coefficients C, for k >  1 are all negative and  tend to the value -2. This 
asymptotic value -2 is interesting in that it suggests a rough model for the NaCI 
Madelung potential in the form 

V0( x, 0,o ) - M - 2x4 - 2x6 - . . . 
= ~ - 2 ~ ~ / ( 1  - x 2 )  (7.9) 

which, although only an approximate formula, shows the proper quartic behaviour as 
well as the required Coulomb poles at x = * l .  

As a final note we refer to the exact special values ( 1 . 1 1 )  and (1.12). One may 
follow the arguments of Forrester and Glasser (1982) and Glasser and Zucker (1980) 
using Jacobi identities (Whittaker and Watson 1973) to obtain some useful formulae, 
for example: 

1 ( - l ) " ' p [ ( m - ~ ) 2 + n 2 / 2 + p 2 / 2 ] - '  = 16'p(2s-1) (7.10) 
m. n, P E  Z 

( 7 . 1 1 )  

Expression (7.10) is an  equivalent form of the CsCl crystal potential when s = i. Since 
p(0 )  = f ,  we immediately obtain V,,,,(+, 0,O) = 2. For the crystal defined 

n = 2; do = (0, 0,O); d ,  = ( 1 , 0 , 0 )  
q o = + l ; q , = - 1  

(7.12) 
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which amounts to parallel planes of like charge, the crystal potential is given by (7.1 1) 
as 

(7.13) 

As mentioned in 0 1, our computer programs, which use the general prescription 
(6.2)-(6.8) with (1.31, verify these exact results and the previous (1.7) numerically. 
One good feature of exact potential results is that they may act as a sharp test of any 
programming effort. 

V( 0, 0, ;, = 2 .  
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