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FEYNMAN QUANTIZATION

An introduction to path-integral techniques

Introduction. By  Richard Feynman (–), who—after a distinguished
undergraduate career at MIT—had come in  as a graduate student to
Princeton, was deeply involved in a collaborative effort with John Wheeler (his
thesis advisor) to shake the foundations of field theory. Though motivated
by problems fundamental to quantum field theory, as it was then conceived,
their work was entirely classical,1 and it advanced ideas so radical as to resist
all then-existing quantization techniques:2 new insight into the quantization
process itself appeared to be called for.

So it was that (at a beer party) Feynman asked Herbert Jehle (formerly a
student of Schrödinger in Berlin, now a visitor at Princeton) whether he had
ever encountered a quantum mechanical application of the “Principle of Least
Action.” Jehle directed Feynman’s attention to an obscure paper by P. A. M.
Dirac3 and to a brief passage in §32 of Dirac’s Principles of Quantum Mechanics

1 John Archibald Wheeler & Richard Phillips Feynman, “Interaction with
the absorber as the mechanism of radiation,” Reviews of Modern Physics 17,
157 (1945); “Classical electrodynamics in terms of direct interparticle action,”
Reviews of Modern Physics 21, 425 (1949). Those were (respectively) Part III
and Part II of a projected series of papers, the other parts of which were never
published.

2 See page 128 in J. Gleick, Genius: The Life & Science of Richard Feynman
() for a popular account of the historical circumstances.

3 “The Lagrangian in quantum mechanics,” Physicalische Zeitschrift der
Sowjetunion 3, 64 (1933). The paper is reprinted in J. Schwinger, Selected
Papers on Quantum Electrodynamics (). I refer to this henceforth as the
“Schwinger Collection.”
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(2nd edition ). Thus did it come about that in May  Feynman defended
a dissertation entitled “The principle of least action in quantum mechanics.”4

Publication of the work (as of the field theoretic work that had stimulated its
creation) was delayed until Feynman (and Wheeler) had returned to academic
life from their wartime participation in the Manhatten Project, and by the time
it appeared in the pages of Wheeler/Feynman’s favorite journal5 the title had
changed—to “Space-time approach to non-relativistic quantum mechanics”—
and the allusions to its original field theoretic reason-for-being had been largely
discarded. Feynman (who was then at Cornell) begins his classic paper with
these words:

It is a curious historical fact that modern quantum mechanics began
with two quite different mathematical formulations: the differential
equation of Schrödinger, and the matrix algebra of Heisenberg. The
two apparently dissimilar approaches were proved to be
mathematically equivalent. These two points of view were destined
to complement one another and to be ultimately synthesized in
Dirac’s transformation theory.

This paper will describe what is essentially a third formulation
of non-relativistic quantum theory. This formulation was suggested
by some of Dirac’s remarks concerning the relation of classical
action to quantum mechanics. A probability amplitude is associated
with an entire motion of a particle as a function of time, rather
than simply with a position of the particle at a particular time.

The formulation is mathematically equivalent to the more
usual formulations. There are, therefore, no fundamentally new
results. However, there is a pleasure in recognizing old things from
a new point of view. Also, there are problems for which the new
point of view offers a distinct advantage . . .

Though Pauli lectured luminously on the germ of Feynman’s idea (to his
students at the ETH in Zürich) already in /,6 and Cécile Morette, at
about that same time (she was then at the Institute for Advanced Study, and
in working contact with both von Neumann and Oppenheimer), attempted
to clarify some of the mathematical details (and to extend the range) of a

4 Feynman says “principle of least action” but means Hamilton’s principle.
In classical mechanics the former terminology refers to something quite else: see
H. Goldstein, Classical Mechanics (2nd edition ) §8–6 or my “Geometrical
mechanics: Remarks commemorative of Heinrich Hertz” ().

5 Reviews of Modern Physics 20, 267 (1948). The paper is reprinted in the
Schwinger Collection.

6 Pauli’s lecture notes (in German) circulated widely. They were made
available in English translation as Pauli Lectures on Physics: Volumes 1–6 in
. Pauli’s remarks concerning the Feynman formalism were presented as an
appendix (“Feynman’s approach to quantum electrodynamics: the path integral
method”) to Volume 6: Selected Topics in Field Quantization.
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formalism that Feynman himself had been content merely to sketch7. . .most
physicists were content at first to look upon Feynman’s accomplishment in
the terms he had presented it: as an amusing restatement of “old things
from a new point of view.” Some important contributions were made by a
few people during the early ’s,8 but Feynman’s great quantum electro-
dynamical papers did not appear until – and it appears to have been
mainly in delayed response to those,9 and to Feynman’s participation in several
important workshops and conferences,10 that the path-integral method entered
the mainstream of physics. During the ’s the previous trickle of papers
on the subject became a flood: the method was explored from every angle,
applied to every conceivable quantum mechanical problem, appropriated by
other branches of physics (statistical mechanics, most notably11). In subsequent
decades the method became basic first to gauge field theory, and more recently
to string theory.

7 “On the definition and approximation of Feynman’s path integrals,” Phys.
Rev. 81, 848 (1951).

8 I am thinking especially of Ph. Choquard, “Traitement semi-classique des
forces générales dans la représentation de Feynman,” Helvetica Physica Acta 28,
89 (1955); H. J. Groenewold, “Quasi-classical path integrals,” Mat. Pys. Medd.
Dan. Vid. Selsk. 30, No.19 (1956); C. W. Kilmister, “A note on summation
over Feynman histories,” Proc. Camb. Phil. Soc. 54, 302 (1957). Choquard,
by the way, was a student of Pauli, and Groenewold a leading authority on and
proponent of the Weyl transform and Wigner/Moyal phase space formalism.

9 The paper in which “Feynman diagrams” make their first appearance
technique bears a title—“Space-time approach to quantum electrodynamics”
(Phys. Rev. 76, 769 (1949))—that alludes explicitly to the path integral paper.
In his introductory remarks Feynman reports that “the Lagrangian form of
quantum mechanics described in the Reviews of Modern Physics” marks “the
genesis of this paper,” but that he has attempted to proceed “without relying
on the Lagrangian method, because it is not generally familiar.” In a footnote
Feynman mentions that (to his chagrin?) application of the sum-over-paths
technique “to electrodynamics [has been] described in detail [already] by [that
same] H. J. Groenewold” in a publication that had appeared a few months
earlier.

10 The famous “Chapel Hill converence”—the proceedings of which were
published as Conference on the role of gravitation in physics (), edited
by Cécile M. De Witt (formerly Morette, but now the wife of the mathematical
physicist Bryce De Witt)—marked the beginning of the modern era for general
relativity, and (though he did not claim expertise in the field) was dominated
by the personality of Feynman. There was by then an emerging consensus that
“Feynman quantization” was the method of choice for quantizing such otherwise
intractable systems as the gravitational field.

11 See, for example, David Falkoff, “Statistical theory of irreversible processes.
Part I. Integral over fluctuation path formulation,” Annals of Physics 4, 325
(1958), which is representative of a vast literature, and is cited here because its
author was my friend.
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The subject has become so broad that even the authors of books—of which
there are by now quite a number12—are forced to restrict their focus, to treat
only aspects of the topic.

It is perhaps not surprising that, once Feynman’s home-grown way of
thinking about quantum mechanics had lost its radical novelty, occasional
instructors (among them me, in –) would test the feasibility of using
the path integral method to teach quantum mechanics . . . and it is certainly not
surprising that such experiments should be undertaken at Caltech (to which
Feynman had gone from Cornell in ). A textbook—Quantum Mechanics
and Path Integrals by Feynman and Albert Hibbs (one of Feynman’s thesis
students)—provides an expanded record of that experiment, which Feynman—
no slave even to his own ideas—untimately abandoned. On evidence of the
text I infer that Feynman himself had paid little or no attention to the work of
Pauli, Morette, Groenewold and a growing number of others: by the mid-’s
he seems to have been no longer the best authority on the formalism that he
himself had invented. It is a measure of the man (or is it an indicator simply
of his assessment of the preparation/interests of his students?) that he seems
to have been more interested in the diverse applications than in the theoretical
refinement of his seminal idea.

In these few pages I can attempt to review only the bed-rock essentials of
the path integral method, but warn the reader that my emphasis and mode of
proceeding will at many points be ideosyncratic.

Point of departure. Quantum dynamics can (in the Schrödinger picture) be
considered to reside in the statement

i� ∂
∂t |ψ)t = H |ψ)t : |ψ)0 known from initial measurement

If H is time-independent then we have the integrated statement

|ψ)t = U(t, 0)|ψ)0 : t � 0 (1.1)

where U(t, 0) is unitary , with U(0, 0) = I (1.2)

and given by
U(t, 0) = e−

i
�

Ht (2)

In more general (time-dependent) cases we still have (1), but lose (2). The side
condition t � 0 is intended to emphasize that the theory is predictive but not
retrodictive: it has nothing to say about what |ψ)t may have been doing prior

12 Some titles pulled from my personal bookshelf: L. S. Schulman, Techniques
and Applications of Path Integration (); R. J. Rivers, Path Integral Methods
in Quantum Field Theory (); C. Grosche, Path Integrals, Hyperbolic Spaces
& Selberg Trace Formulae (); T. Tashiwa, Y. Ohnuki & M. Suzuki, Path
Integral Methods (). There are many others, not to mention the chapters
devoted to the subject in books addressed primarily with other matters.
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to the projective act that created |ψ)0.

Relative to any given orthonormal basis
{
|a)

}
the fundamental equation

(1.1) acquires the representation13

(a|ψ)t =
∑∫

(a|U(t, 0)|b)︸ ︷︷ ︸ db(b|ψ)0 (3)

|—“transition amplitude:” |b)0 −→ |a)t

But (1) entails

U(t, 0) = U(t, t1)U(t1, 0) : t � t1 � 0 (4.1)

which acquires the representation

(a|U(t, 0)|b) =
∫

(a|U(t, t1)|a1)da1(a1|U(t1, 0)|b) (4.2)

In ordinary probability theory we encounter situations in which it becomes
natural to write

Pa←b ≡ probability of going from b to a
Pa←c · Pc←b ≡ probability of going from b to a via c

and on the assumption that the various channels a ← c ← b are statistically
independent obtain

Pa←b =
∑

c

Pa←c · Pc←b (5)

The quantum mechanical construction (4.2) is of similar design, except that it
involves probability amplitudes rather than probabilities; it asserts, moveover,
that in quantum mechanical contexts (5) is, in general, not valid:

|(a|U(t, 0)|b)|2 =
∣∣∣
∫

(a|U(t, t1)|a1)da1(a1|U(t1, 0)|b)
∣∣∣2

�=
∫
|(a|U(t, t1)|a1)|2da1|(a1|U(t1, 0)|b)|2

We have touched here on the subtle shift of emphasis that lies at the heart
of Feynman’s conception of quantum mechanics. Standardly, we are taught
to assign probability amplitudes to the states of quantum mechanical systems:
that’s the kind of thing that ψ(x) is. But Feynman is “process oriented,” in
the sense that he would have us

associate probability amplitudes with the alternative
independent channels that gave rise to the state

and from those deduce the amplitudes of states:

amplitude of state =
∑

channels

amplitude of contributing channel (6)

13 As a matter merely of notational convenience we will—having made our
point—henceforth assume the basis elements to be continuously indexed, and
write simply

∫
in place of Σ

∫
.
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At this point, Feynman—characteristically but less fundamentally—elects
to work in the space representation,14 so (3) becomes (in the one-dimensional
case)

ψ(x, t) =
∫
K(x, t; y, 0)ψ(y, 0) dy (8)

where
K(x, t; y, 0) = (x|U(t, 0)|y) (9)

is the familiar 2-point Green’s function or “propagator.” It is a solution of the
Schrödinger equation

i� ∂
∂tK(x, t; •, •) = HK(x, t; •, •) (10.1)

—distinguished from other solutions by the circumstance that

lim
t↓0

K(x, t; y, 0) = δ(y − x) (10.2)

If the Hamiltonian is time-independent then Hψn(x) = Enψn(x) leads to
the familiar spectral construction of the propagator

K(x, t; y, 0) =
∑

n

e−
i
�

Entψn(x)ψ∗n(y) (11)

which is readily seen to conform to (10). But Feynman, following in the
footsteps of Dirac, elects to proceed otherwise:

Partition the time interval [t, 0] into N +1 sub-intervals of (let us assume)
equal duration

τ ≡ t

N + 1
and, on the basis of (4.2), write

K(x, t; y, 0) =
∫
· · ·

∫∫
K(x,t;xN ,t−τ)dxN ··· dx2K(x2,t,x1,2τ) dx1K(x1,τ ;y,0)

=
∫
· · ·

∫∫ N∏
k=0

K(xk+1, kτ + τ ;xk, kτ) dx1dx2 · · · dxN (12)

with x0 ≡ y and xN+1 ≡ x. For time-independent systems we have the
simplification

K(xk+1, t+ τ ;xk, t) = K(xk+1, τ ;xk, 0) : all t

14 Whence, ultimately, Feynman’s title: “Space-time formulation of non-
relativistic quantum mechanics,” where the “non-relativistic” is intended to
signal that “space-time” is not, in this instance, to be read as an allusion
to special relativity: Feynman does not, at this stage, propose to address
the problems characteristic of relativistic quantum mechanics (quantum field
theory).
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∫ dx

dx

dx

dx

∫
∫
∫

Figure 1: The red sequence of transitions—called a “channel” in
the generic language of (6)—is, because Feynman elects to work in
the space representation, and the diagram is inscribed on spacetime,
more naturally/vividly considered to describe a “path.” Infinitely
many such, according to (12), contribute independently/additatively
to the transition (x, t)←− (y, 0).

The representation (12) may look like a step in the wrong direction, since
N -fold integration is typically difficult/impossible to do analytically, and can
be a challenge even when approached numerically. The saving circumstance is
that, as will be shown,

K(x, τ ; y, 0) simplifies as τ becomes small

and the simplification is of such a nature as to lend a striking interpretation to
the right side of (12).

Dirac had been brought (by discussion of the relationship between classical
and quantum mechanical canonical transformations) to the conclusion3,15 that

“K(x, t; y, 0) corresponds to exp
{

i
�

∫ t

0

Ldt
}

” (13.1)

and that therefore

“K(x, τ ; y, 0) corresponds to exp
{

i
�
Lτ

}
” (13.2)

15 See also his “On the analogy between classical and quantum mechanics,”
Review of Modern Physics 17, 195 (1945), which Feynman cites.
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which “suggests that we ought to consider the classical Lagrangian not as a
function of coordinates and velocities, but rather as a function of the coordinates
at time t and the coordinates at time t+ dt.”

When Feynman, in the presence of Jehle, first read Dirac’s little paper
(from which he quotes at length in this thesis) he was reportedly baffled by the
occurance there of phrases like “corresponds to.”16 He was very soon convinced
that “analogous to” could not mean “equals,” but found that if he interpreted
the phrase to mean “proportional to”—writing

K(x, t+ τ ; y, t) = (factor independent of x and y)︸ ︷︷ ︸ · e
i
�

S(x,t+τ ;y,t) (14.1)

function only of τ in time-independent cases: call it 1/A(τ)

with

S(x, t+ τ ; y, t) =
∫ t+dt

t

L
(
ẋ(t′), x(t′)

)
dt′ (14.2)

≡
{

“dynamical action” of the brief
classical path (x, t+ dt)← (y, t)

—then the Schrödinger equation fell into his lap! And upon introduction of
(14.1) into (12) he obtained a pretty statement which in the time-independent
case (to which I restrict myself simply as a notational convenience) reads

K(x, t; y, 0) =
∫
· · ·

∫∫
exp

{
i
�

N∑
k=0

S(xk+1, τ ;xk, 0)

︸ ︷︷ ︸
} dx1

A

dx2

A
· · · dxN

A

action of a segmented path (x,t)←(y,0) with “dynamical” segments

≡
∫

paths (x,t)←(y,0)

e
i
�

S[path] D[path] (15)

The key circumstances here are supplied by classical mechanics

S[path (x, t)← (y, 0)] =
∫ t

0

L(path) dt′

=
∑

segments

∫
L(dynamical segment) dt′

=
∑

segments

S[dynamical segment]

=
∑

segments

S(segmental endpoint; segmental endpoint)

16 For an amusing account of the moment of discovery, see page 129 in Gleick.2
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Figure 2: Hamilton’s principle asks us to examine the hypothetical
paths linking specified endpoints, and to associate classical reality
with the (red) path that extremizes the action: δS = 0. Feynman,
on the other hand, is led to view the test paths as “statistically
independent channels,” and to assign to each a

path amplitude ∼ e
i
�
(classical path action)

Feynman’s paths (represented in the figure by the dashed spline)
differ, however, from those contemplated by Hamilton/Lagrange in
that almost all are almost everywhere non-differentiable.

and hinge on the fact that while the action

S[x(t)] ≡
∫ t

0

L
(
ẋ(t′), x(t′)

)
dt′ is by nature a functional

it becomes a 2-point function (function of the endpoints) if x(t) is “dynamical”
in the sense that it satisfies the equations of motion, together with the specified
endpoint conditions x(t0) = x0 and x(t1) = x1:

S[x(t)] = S(x1, t1;x0, t0) if δS[x(t)] = 0
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Lagrange/Hamilton had contemplated a population of hypothetical “test
paths” in order to lend meaning to δS[path], and thus to be placed in position to
trace the equations of motion (Lagrange’s equations) to an underlying
variational principle (Hamilton’s Principle). But at (15) Feynman has, in a
manner of speaking, declared the test paths to be each as “real” as any other,
in the sense that each has quantum mechanical work to do: at the beginning
of §4 in the RMP paper5 we encounter his

Postulate II: The paths contribute equally in magnitude, but the
phase of their contribution is the classical action (in units of �);
i.e., the time integral of the Lagrangian taken along the path.

In his §7 Feynman rehearses Dirac’s “very beautiful” argument to the
effect that in the limit � → 0 one can expect the contribution of the classical
path to predominate. In that sense, Feynman’s Principle gives back Hamilton’s
Principle in the classical limit .

Though the point seems never to have bothered Feynman very much,17

many people have looked upon the “normalization factors” 1/A in (15) as—
since A must be assigned value on a base-by-case basis—a formal blemish. It
is a blemish with which Pauli, in particular, was not content to live. He had
the genius to observe6 that the entirely classical object18

KC(xxx, τ ;yyy, 0) ≡ (ih)−n/2
√
D · exp

{
i
�
S(xxx, τ ;yyy, 0)

}
(16)

D ≡ D(xxx, τ ;yyy, 0) ≡ (−)n det
∥∥∥∂2S(xxx, τ ;yyy, 0)

∂xr∂ys

∥∥∥
becomes a solution of the Schrödinger equation when τ is small—becomes, in
fact, not just any old solution, but the “fundamental solution:”

↓
= δ(xxx− yyy) at τ = 0

That same observation was reported simultaneously by Cécile Morette,7 who
in her footnote 3 acknowledges that she is “greatly indebted” to Léon Van
Hove (then also a visitor at the Institute for Advanced Studies); it was Van
Hove who directed her attention to papers by P. Jordan () and J. H. Van
Vleck () in which (16) had previously appeared. Neither Pauli nor his
student Choquard8 acknowledge any such influence. In the modern literature

17 See, however, page 33 in Feynman & Hibbs, Quantum Mechanics & Path
Integrals ().

18 It is—for reasons that will become evident in a moment—convenient for
purposes of the present discussion to work in n -dimensions; one-dimensional
results can be recovered by specialization, but are in themselves too simple to
reveal what is going on.
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D is usually called the “Van Vleck determinant.”19

Van Vleck’s principal references are to papers reporting the invention—
simultaneously and independently by Gregor Wentzel, H. A. Kramers and Léon
Brillouin ()—of what has become known as the “WKB approximation.”20

Those authors worked in one dimension. Van Vleck’s objective was to show
that the deeper significance of a certain characteristic detail becomes evident
only when one works in higher dimension.

The “semi-classical (or WKB) approximation,” in all of its variant forms,
proceeds by expansion in powers of �. The deep point recognized and exploited

19 John Van Vleck (–) wrote—under the direction of Edwin Kemble,
at Harvard—the first US dissertation treating a quantum mechanical topic, and
during the ’s was a leading player (first at the University of Minnesota, later
at the University of Wisconsin) in the application of (old) quantum mechanics
to diverse physical problems. Some of his results reportedly contributed to
Bohr’s development of the Correspondence Principle, and many hinged on deft
use of the interplay between classical and quantum mechanical ideas. In 
he returned to Harvard as a faculty member and undertook the work (quantum
theory of magnetic susceptibility) that led to a Nobel Prize in .

By the late ’s the relevance to Feynman formalism of the early paper to
which I have referred (“The correspondence principle in the statistical
interpretation of quantum mechanics,” Proceedings of the National Academy
of Sciences 14, 178 (1928)) had become well known. So when a short meeting
on the subject took place at Brandeis University (where I was then a graduate
student) Van Vleck was asked to speak. He began with the remark that reprints
of his papers either disappeared at once or sat on his shelf for years, and that
the stack of papers beside him was a nearly complete set of reprints for the
paper in question . . .which is how I acquired my treasured copy.

Now it happens that one Mrs. Miner T. (Connie) Patton, who was for
many years secretary to the president of Reed College, had earlier in her career
been secretary to the physics department at Harvard (her patient secretarial
assistance is acknowledged in the preface of Kemble’s Fundamental Principles
of Quantum Mechanics ()), and had established a life-long friendship with
Van Vleck. So it happened that when, in the early ’s, Van Vleck came to
Portland to pursue (at the Portland Art Museum) his deep interest in Japanese
prints (of which he had a large and important collection) he stayed with his
old friend, and I had an opportunity to spend some time with him. Ignorant
as I then was of the strong classical component in his early work, I asked him
how he came to write the “Van Vleck determinant paper.” He responded that
the essential idea was really due to Oppenheimer (then , and his junior by
five years), suggested to him in conversation at one of the famous Ann Arbor
Summer Schools.

20 See, for example, David Griffiths, Introduction to Quantum Mechanics
(), Chapter 8.
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by Pauli is that

for short times the WKB approximation becomes exact:

thus was he led to reinvent Van Vleck’s “n-dimensional WKB theory” and to
assign to (15) this sharpened (A-independent) meaning:

K(xxx, t;yyy, 0) = lim
N→∞

∫
· · ·

∫∫ N∏
k=0

KC(xxxk+1, τ ;xxxk, 0) dxxx1dxxx2 · · ·dddxN (17)

where xxx0 ≡ yyy, xxxN+1 ≡ xxx, τ ≡ t/(N +1) and KC(xxxk+1, τ ;xxxk, 0) is given by (16).

Taking (15) as his postulated point of departure, Feynman proceeds to
demonstrate
• recovery of the Schrödinger equation
• recovery of such fundamental statements as [x , p ] = i� I

and that the path integral method supplies new ways to think about (say) the
two-slit experiment and the quantum theory of measurement, new approaches
to approximation theory, and much else. But before we take up such matters
we must secure some of the claims made in preceding paragraphs.21

Demonstration that quantum mechanics is briefly classical. Our objective here
will be to secure the credentials of the Van Vleck/Pauli construction (16). In
an effort to keep simple things simple I look first to systems of the design

H(p, x) = 1
2mp2 + V (x)

and then will, by degrees, relax the simplifying assumptions built into that
design. We look first to the outlines of Van Vleck’s contribution.

The Schrödinger equation reads − �
2

2mψxx + V ψ = i�ψt, and if we assume
the wave function ψ(x, t) to have been written in polar form

ψ = Ae
i
�

S

assumes the form{
A ·

[
1

2mS2
x + V + St

]
− i�

[
1
m (SxAx + 1

2ASxx) +At

]
− �

2 1
2mAxx

}
e

i
�

S = 0

Divide by Ae
i
�

S , obtain a power series in � which in the WKB tradition we

21 How did Dirac—who had all the essential elements in hand already in
—manage not to invent the path integral method? The question is
frequently posed, and must surely have been asked of Dirac himself, but I am
aware of no printed record of his thoughts on the matter. It is my guess that he
lacked Feynman’s intense but ideosyncratic motivation to develop a functional
alternative to the standard (Hamiltonian) quantization procedure; that he did
not expect to achieve more than an interesting but imperfect analogy, so did
not seriously try to; that he was preoccupied in  with problems posed by
quantum field theory, which made invention of the method too big a bite, even
for Dirac.
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interpret to mean that in

0th order : 1
2mS2

x + V + St = 0 (18.0)
1st order : 1

m

{
Sx(logA)x + 1

2Sxx

}
+ (logA)t = 0 (18.1)

2nd order : Axx/A = 0 (18.2)

These equations are collectively exact. In WKB approximation we agree to
abandon the final equation . . . or better: to look upon

1
A
∂2

∂x2
A ≈ 0

as a “consistency condition” imposed upon information extracted from the
leading pair of equations. At (18.0) we have recovered precisely the Hamilton-
Jacobi equation (the equation from which Schrödinger historically extracted
the equation that bears his name), while multiplying (18.1) by 2A2 yields an
equation that can be written

( 1
mSxA

2)x + (A2)t = 0 (19)

and has therefore the design of a one-dimensional continuity equation. It has
evidently to do with conservation of probability , since

A2 = |ψ|2 = probability density (20)

We lend the “look of generality” to the preceding results by noting that
the Hamilton-Jacobi equation can be expressed

H(Sx, x) + St = 0 (21.0)

and that (19) can be written

(vA2)x + (A2)t = 0 (21.1)

where

v ≡ v(x, t) ≡ ∂H(p, x)
∂p

∣∣∣
p→Sx

is on dimensional grounds a “velocity.” For n -dimensional systems of the type
H = 1

2mppp···ppp + V (xxx) we in place of (18.0) and (19) obtain

1
2m∇∇∇S···∇∇∇S + V + St = 0 (22.0)

and
∇∇∇···(A2 1

m∇∇∇S) + (A2)t = 0 (22.1)

In the most general classical setting one contemplates Hamiltonians that depend
unrestrictedly upon indefinitely many generalized coordinates qqq≡

{
q1, q2, ... , qn

}
and their conjugate momenta ppp≡

{
p1, p2, ... , pn

}
; the Hamilton-Jacobi equation
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then reads
H( ∂S

∂q1 , . . . ,
∂S
∂qn , q

1, . . . , qn) + ∂S
∂t = 0 (23.0)

and the associated continuity equation becomes

n∑
i=1

∂
∂qi

[
viA2

]
+ ∂
∂ t
A2 = 0 (23.1)

vi ≡ vi(qqq, t) ≡ ∂H(ppp, qqq)
∂pi

∣∣∣
ppp→∇∇∇S

It is in this general language that I conduct the next phase of this discussion.

Occupying a distinctive place among the solutions of the Hamilton-Jacobi
equation are the so-called “fundamental solutions,” familiar to us as “dynamical
action”

S(qqq, t; qqq0, t0) =
∫ t

t0

L
(
q̇qq(t′), qqq(t′)

)
dt′

—the action of the dynamical path qqq(t′) that links (qqq0, t0) to (qqq, t). The function
S(qqq, t; qqq0, t0) is a two-point action function: in the leading variables (qqq0, t0) it
satisfies the H-J equation (23.0), while in the trailing variables it satisfies the
time-reversed H-J equation

H( ∂S
∂q1

0
, . . . , ∂S

∂qn
0
, q10 , . . . , q

n
0 )− ∂S

∂t = 0 (23.0)

In phase space it is the Legendre generator of the t -parameterized canonical
transformation (dynamical phase flow) the Lie generator of which is H(ppp, qqq),
and does its work this way: write

pi = +
∂S(qqq, t; qqq0, t0)

∂qi
and p0i = −∂S(qqq, t; qqq0, t0)

∂qi
0

(24)

By algebraic inversion of the latter obtain qi(t; qqq0, ppp0, t0), and by insertion into
the former obtain pi(t; qqq0, ppp0, t0).

It is the upshot of (what I call) “Van Vleck’s theorem” that

A2 = D(qqq, t; qqq0, t0) ≡
∣∣∣∂ppp0(qqq, t; qqq0, t0)

∂qqq

∣∣∣ = (−)n det
∥∥∥∂S(qqq, t; qqq0, t0)

∂qi∂qj
0

∥∥∥ (25)

satisfies (23.1). The quantum mechanical utility of the theorem should not be
allowed to obscure the fact that it is itself entirely classical (though absent from
every classical mechanics text known to me). I turn now to the proof of Van
Vleck’s theorem:22

22 I have been following quantum mechanics (), Chapter 1, pages 91
et seq , where a proof patterned upon Van Vleck’s own begins on page 98. Here
I present an alternative argument adapted from classical mechanics (),
pages 452–456.
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Hit the H-J equation (23.0) with ∂i ≡ ∂
∂qi to obtain

Hi + vkSki + Sti = 0

where

vk ≡ ∂H(ppp, qqq)
∂pk

∣∣∣
ppp→∇∇∇S

has been joined now by Hi ≡
∂H(ppp, qqq)
∂qi

∣∣∣
ppp→∇∇∇S

Subsequent differentiation by ∂j ≡ ∂
∂qi

0
(note the sequestered status of the

variables qqq0 , which enter only via S(qqq, t; qqq0, t0)) gives

vk
i Sk j + vk�SkiS� j + vkSkij + Sti j = 0

with

vk
i ≡

∂2H(ppp, qqq)
∂qi∂pk

∣∣∣
ppp→∇∇∇S

and vk� ≡ ∂2H(ppp, qqq)
∂pk∂p�

∣∣∣
ppp→∇∇∇S

Elementary manipulations now supply

(vk∂k + ∂ t)Sji = −Sjk (vk
i + vk�S�i)︸ ︷︷ ︸

= ∂i v
k ≡ V k

i(qqq, t; qqq0, t0)

which in an obvious matrix notation becomes

(vk∂k + ∂ t) S = −S V

Assume that D = (−)n det S �= 0. Then

S
–1(vk∂k + ∂ t) S = −V (26.1)

gives (with the abandonment of a lot of potentially useful information)

tr
{
S

–1(vk∂k + ∂ t) S
}

= −∂kv
k

It is, however, a corollary of the elegant identity log det M = tr log M that

tr
{
M

–1δM
}

= M –1δM

where M is any matrix, M ≡ det M and δ is any first-order differential operator.
We are in position therefore to write (vk∂k + ∂ t)D = −D∂kv

k, from which
Van Vleck’s theorem

∂k(vkD) + ∂tD = 0 (26.2)

immediately follows. Sweet . . . if I do say so myself! It remains, however, to
clarify what Van Vleck’s theorem is trying to tell us.
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Solutions S(qqq, t) serve, by pi = ∂iS, to inscribe moving surfaces

pi = pi(qqq, t)

on 2n-dimensional phase space. The dynamical flow of phase points is in general
described by equations of the form

qqq0 �−→ qqq = qqq (t; qqq0, ppp0)
ppp0 �−→ ppp = ppp(t; qqq0, ppp0)

but for points resident on the S-surface one can use ppp0 = ∂∂∂S(qqq0, t0) to obtain

qqq0 �−→ qqq = qqq (t; qqq0, ∂∂∂S(qqq0, t0)) ≡ qqq(t; qqq0, t0)

which (note the disappearance of ppp0) serves to describe a time-dependent map
(i.e. to install a moving coordinate system) on configuration space. The
Jacobian ∣∣∣ ∂qqq

∂qqq0

∣∣∣ ≡ ∣∣∣ ∂ (q1, q2, . . . , qn)
∂ (q10 , q

2
0 , . . . , q

n
0 )

∣∣∣
enters into the description

dq1dq2 · · · dqn =
∣∣∣ ∂qqq
∂qqq0

∣∣∣ dq10dq20 · · · dqn
0

of the local dilation achieved by the map, and via

w(qqq, t)dq1dq2 · · · dqn = w(qqq0, t0)dq
1
0dq

2
0 · · · dqn

0

informs us that densities written onto configuration space transform “as scalar
densities:”

w(qqq, t) =
∣∣∣ ∂qqq
∂qqq0

∣∣∣–1

· w(qqq0, t0) (27)

But the elementary theory of Jacobians (which historically represent one of the
first applications of the theory of “determinants”), taken in combination with
(25), supplies ∣∣∣ ∂qqq

∂qqq0

∣∣∣–1

=
∣∣∣∂ppp0

∂qqq0

∣∣∣–1

·
∣∣∣∂ppp0

∂qqq

∣∣∣
= (constant) · (Van Vleck determinant D)

Evidently D quantifies the changing size of the moving “shadow” (projection
onto configuration space) of a “patch” inscribed on the S-surface as it “drifts
with the dynamical flow” in phase space. State points marked on interior
of the original patch are mapped to points interior to the dynamical image
of that patch, and the conservation law (26.2) refers to the shadow of that
elementary proposition. We can state that Van Vleck’s theorem is a projective
consequence of Liouville’s theorem (i.e., of the incompressibility of Hamiltonian
flow), but with this proviso: the measure-preserving sets contemplated by Van
Vleck are not Liouville’s “blobs” in phase space, but “patches (with area but no
volume) inscribed on the surfaces that arise by ppp = ∂S/∂qqq from S(qqq, t; qqq0, t0).
The following figures are intended to clarify the situation.
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x

p

x

p

Figure 3: The red parallelogram at upper left in the top figure
represents a typical “blob” in the 2-dimensional phase space of a free
particle. A single designated state point • resides within the blob.
The green arrow shows the effect of dynamical phase flow, which
by Liouville’s theorem is area-preserving. The result of projecting
that imagery onto configuration space is shown in blue. The lower
figure refers to the related ideas of special interest to Van Vleck.
Phase space has become 2-dimensional so “S-surfaces” have become
curves—actually straight lines (shown in red), since

S(x, t;x0, t0) = m
2

(x− x0)2

t− t0
=⇒ p(x; t;x0, t0) = m

x− x0

t− t0
I have attempted to tatto a “patch” on such a surface, to represent
the dynamical transport of the patch, and (in blue) to represent the
motion of the projected shadow of the patch.
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Van Vleck’s D(qqq, t; qqq0, t0) describes what in the caption I call the “projected
shadow of the patch,” and his continuity equation (26.2) is in effect a statement
that “a mite riding on the patch will see a locally concerved density of freckles.”

Turn now with Pauli to consideration of what Van Vleck has to say when t
is small (and called τ to emphasize the fact). It proves convenient at this point
to abandon generalized coordinates qqq in favor of Cartesian coordinates xxx, and
to restrict our attention to systems of the form

L = 1
2mẋxx···ẋxx− V (xxx)

Additionally, we set t0 = 0 and agree to regard xxx0 and yyy as interchangeable
symbols. In the short run we expect to have

xxx(t′) = yyy + xxx−yyy
τ t′

giving

S(xxx, τ ;yyy , 0) =
∫ τ

0

{
1
2m

xxx−yyy
τ ··· xxx−yyyτ − V

(
yyy + xxx−yyy

τ t′
)}

dt′

which—simply to avoid notational distractions—I prefer to discuss in the one
dimensional case: we in that case have

S(x, τ ; y, 0) = S0(x, τ ; y, 0) −
∫ τ

0

V
(
y + x− y

τ t′
)
dt′ (28)

where

S0(x, τ ; y, 0) ≡ m
2

(x− y)2
τ

=
{ the dynamical action of a

free particle at time τ

Interpretation and management of the second term on the right side of (28) is
a more delicate matter. It is evident that

lim
y→x

∫ τ

0

V
(
y + x− y

τ t′
)
dt′ = V (x) τ

but we have at the moment no special interest in setting y = x. Differentiation
of (28)—recall p = ∂S/∂x and F = −∂V/∂x—gives

p(x, τ) − p0 =
∫ τ

0

F
(
y + x− y

τ t′
) t′
τ dt

′

where p0 = ∂S0/∂x = m(x − y)/τ is the conserved momentum of a particle
that moves freely from (y, 0) to (x, τ): in other words,

change of momentum = net impulse
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The interpretation is nice, but the integral is no less awkward than the one
encountered at (28): we cannot expand in powers of τ because τ lives in the
denominator, and we cannot expand in powers of (x− y) because (x− y) is in
general not small. Pauli’s plan of attack is to introduce S1(x, τ ; y, 0) by

−
∫ τ

0

V
(
y + x− y

τ t′
)
dt′ = −V (x) τ + S1(x, τ ; y, 0)

and then, by a fairly intricate function-theoretic argument,22 to show that under
certain weak hypotheses the function S1(x, τ ; y, 0) possesses certain essential
properties. I will proceed more simply (but less generally): Assume

V (x) = k · (x/a)n : [a] = length

We can then actually perform the integral, and obtain∫ τ

0

V
(
y + x− y

τ t′
)
dt′ = (k/an) 1

n+1

(
xn + xn−1y + xn−2y2 + · · · + yn

)
τ

Insert

S(x, τ ; y, 0) = 1
2m

(x− y)2
τ (29)

− (k/an) 1
n+1

(
xn + xn−1y + xn−2y2 + · · · + yn

)
τ

into the Hamilton-Jacobi equation and obtain

1
2mS

2
x + (k/an)xn + Sτ =




k2

2ma2
1
22 τ

2 : n = 1
k2

2ma4
1
32 (2x+ y)2 τ2 : n = 2

k2

2ma6
1
42 (3x2 + 2xy + y2)2 τ2 : n = 3

k2

2ma8
1
52 (4x3 + 3x2y + 2xy2 + y3)2 τ2 : n = 4

...
= 0 + expression of order O(τ2) (30)

Evaluation of the Van Vleck determinant D = (−)dimension|∂2S/∂x∂y| gives

D(x, τ ; y, 0) =




m
τ : n = 1
m
τ + (k/a2) 1

3 τ : n = 2
m
τ + (k/a3) 1

4 (2x+ 2y) τ : n = 3
m
τ + (k/a4) 1

5 (3x2 + 4xy + 3y2) τ : n = 4
...

= m
τ + expression of order O(τ) (31)

22 See page 169 in the MIT edition of the lecture notes previously cited.6
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The preceding discussion is readily generalized: Assume the potential can be
developed V (x) =

∑
Vnx

n. Introduce the “superpotential”

W (x) ≡
∫ x

0

V (x′) dx′ =
∑

1
n+1Vnx

n+1

that takes its name from the circumstance that V (x) = d
dxW (x). Use the pretty

identity

xn+1 − yn+1

x− y
= xn + xn−1y1 + nn−2y2 + · · · + x1yn−1 + yn

to obtain

W (x) −W (y)
x− y

=
∑
n

Vn
xn + xn−1y1 + nn−2y2 + · · · + x1yn−1 + yn

n+ 1

The implication is that for potentials of the assumed form we can write

∫ τ

0

V
(
y + x− y

τ t′
)
dt′ = W (x) −W (y)

x− y τ

and that (in the “uniform rectilinear approximation”) the short-time classical
action function can be described

S(x, τ ; y, 0) = 1
2m

(x− y)2
τ − W (x) −W (y)

x− y τ (32)

The illustrative equations (30) and (31) become now instances of the more
general statements

1
2mS

2
x + V (x) + Sτ = 1

2m

[
W (x) −W (y)

(x− y)2
− V (x)
x− y

]2

τ2 (33.1)

and
D(x, τ ; y, 0) = m

τ −
[
2W (x) −W (y)

(x− y)3
− V (x) − V (y)

(x− y)2
]
τ (33.2)

Insert K(x, τ ; y, 0) ≡
√
αD e

i
�
S into the Schrödinger equation and (holding

the numerical value of α in suspension for the moment) obtain

− �
2

2mKxx + (k/a2)xnK − i�Kτ

=



K · k2

2ma2
1
22 τ

2 : n = 1

K · k2

2ma4
1
32

{ 3ma2(2x+y)2+6a2i�τ+k(2x+y)2τ2

3ma3+kτ2

}
τ2 : n = 2

...
= 0 +K · (expression of order O(τ2)) (34)
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Mathematica supports this general conclusion even if one works from (33), but
the expression that then appears on the right is too messy to be usefully written
out. Observe finally that in each of the above cases (as also in the general case:
work from (32) and (33.2))

lim
τ↓0

√
αD e

i
�
S =

√
αm/τ exp

{
i
�

m
2 (x− y)2/τ

}

Proceeding formally, we write

=
√
αmπ/βτ ·

√
β/πe−β(x−y)2 with β ≡ m/2i�τ

and observe that if we contrived to assign to β a positive real part then we
would have

√
β/πe−β(x−y)2−→ δ(x− y) in the limit β ↑ ∞ (which is to say: in

the limit �τ ↓ 0). To achieve
√
αmπ/βτ = 1 we set α = 1/2πi� and obtain

K(x, τ ; y, 0) ≡
√
D/(ih)dimension e

i
�
S =

√
m
ihτ e

i
�
S (35)

The color coding serves here to emphasize that
• the S(x, τ ; y, 0) introduced at (29) is an approximation to the exact classical

action S(x, τ ; y, 0), but an approximation so good that it fails only in O(τ2)
to satisfy the Hamilton-Jacobi equation;

• the K(x, τ ; y, 0) is an approximation to the KC(x, τ ; y, 0) contemplated at
(16), but an approximation so good that it conforms to the prescribed
initial condition

lim
τ↓0

K(x, τ ; y, 0) = δ(x− y)

and fails only in O(τ2) to satisfy the Schrödinger equation.
Pauli22 asserts on the basis of brief argument, and Choquard8 works hard to
establish in greater detail, the generality of the conclusions to which we have
here been led.

It proves instructive to notice that—at least in favorable cases—the
conclusions reached above can be recovered directly from the established
principles of ordinary quantum mechanics. I discuss now how this can be
accomplished. We had occasion already at (97) in Chapter 0 to observe that
if—and a mighty big “if ” it will turn out to be—we were in position to write

eH =
x

[
eH(x,p)

]
p

then by straightforward application of the “mixed representation trick”23 we
would have

K(x, t; y, 0) ≡ (x|U(t, 0)|y)

= 1
h

∫
exp

{
i
�

[
p · (x− y) − H(x, p) t

]}
dp (36)

23 It was an early contribution to the path integral literature (W. Tobocman,
“Transition amplitudes as sums over histories,” Nuovo Cimento 3, 1213 (1956))
that brought the power of the“mixed representation trick” first to my attention.
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Not quite: the basic idea sound, but it needs to be formulated a bit more
carefully . . . as will emerge when we look to specific examples. Look first to the
free particle where—trivially—

e
1

2m p2
=

x

[
e

1
2mp2 ]

p
supplies H(x, p) = 1

2mp
2

which when introduced into (36) was already seen at (91.5) in Chapter 0 to give

K(x, t; y, 0) =
√

m
iht exp

{
i
�
S(x, t; y, 0)

}
(37)

S(x, t; y, 0) = m
2

(x−y)2

t

These familiar results are, as it happens, exact at all times and preserve their
designs as t ↓ τ . The example of a particle in free fall is in several
respects more instructive. An easy application of Zassenhaus’ identity24 gives

e
1

2m p2+mgx =
x

[
emgx+ 1

2mp2− 1
2i�gp− 1

6 �
2mg2 ]

p

but to reach our objective we need this somewhat refined statement (in which
I adopt the abbreviation β ≡ i/�):

e−β( 1
2m p2+mgx )t =

x

[
e−β(mgx+ 1

2mp2)t− 1
2(−βt)2i�gp−(−βt)3 1

6 �
2mg2 ]

p

=
x

[
e−β(mgx+ 1

2mp2)t− 1
2(−βt)gpt+(−βt) 1

6mg2t2
]
p

=
x

[
e−β

{
mgx+ 1

2mp2− 1
2 gpt+

1
6mg2t2

}
t
]
p

≡
x

[
e−βH(x,p,t) t

]
p

Evidently we should, in general, expect the H in (36) to depend not only upon
x and p but also upon t. Returning now with

H(x, p, t) = 1
2mp

2 +mgx− 1
2g tp+ 1

6mg
2t2

to (36) we confront again a (formal) Gaussian integral, and obtain

K(x, t; y, 0) =
√

m
iht exp

{
i
�
S(x, t; y, 0)

}
(38)

S(x, t; y, 0) = m
2

(x−y)2

t −mg x+y
2 t− 1

24mg
2t3

in precise agreement with (44.10) in Chapter 2. In discussion of that earlier
result we noticed that the S(x, t; y, 0) described above is just the dynamical
action that arises from the system L = 1

2mẋ
2 − mgx. These gravitational

equations are again exact at all times. In the limit t ↓ τ we can abandon the
t3-term; we are led then back to an instance of (29):

S(x, τ ; y, 0) = m
2

(x−y)2

t −mg 1
2 (x+ y)t

24 See again (73.5) in Chapter 0.
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My final example—the harmonic oscillator —has, in effect, already been
discussed: at (92.2) in Chapter 0 we obtain a result that can be expressed

e−β( 1
2m p2+ 1

2mω2 x )t =
x

[
e−β

{
mω
2 tanωt·x2+(1−secωt)·xp+ 1

2mωtanωt·p2+ 1
2log secωt

} ]
p

Notice that the exponentiated
{
etc.

}
does not in this instance present t as a

factor: it might therefore seem a bit artifical to write
{
etc.

}
= H(x, p, t)t, but

remains possible in principle, and proves useful in practice. At short times
obtain

H(x, p, τ) = 1
2mp

2 + 1
2mω

2x2 + 1
4 (1 − 2xp)ω2τ

+ 1
3

{
1

2mp
2 + 1

2mω
2x2

}
ω2τ2

+ 1
24 (1 − 5xp)ω4τ3

+ 2
15

{
1

2mp
2 + 1

2mω
2x2

}
ω4τ4 + · · ·

Returning with this information to (36) we—by formal Gaussian integration—
recover

K(x, t; y, 0) =
√

mω
ih sinωt exp

{
i
�
S(x, t; y, 0)

}
(39)

S(x, t; y, 0) = mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]
The classical significance of this result was discussed already at (0-94/95). In
the short-time limit t ↓ τ we have

S(x, τ ; y, 0) = m
2

(x−y)2

τ − 1
6mω

2(x2 + xy + y2)τ
− 1

360 mω4(4x2 + 7xy + 4y2)τ3

− 1
15120mω

6(16x2 + 31xy + 16y2)τ5 −O(τ7)

where I have highlighted the terms that arise by (29) in “uniform rectilinear
approximation.”

We have now in hand a short catalog of exactly soluable cases,25

which will serve us well as benchmarks when we look to cases that do not admit
of exact analysis. And we are in position now to discuss, in concrete detail, the

intimate relationship between lim
t↓0

K and lim
�↓0

K

upon which the path integral formalism rests. For a free particle we
introduce H(x, p, τ) = 1

2mp
2 into (36)—now written

K(x, τ ; y, 0) = 1
h

∫
exp

{
i
�
g(p;x, y, τ)

}
dp (40)

g(p;x, y, τ) ≡ p ·(x− y) − H(x, p, τ) τ

25 Notice that the Hamiltonian is, in each instance, quadratic in p and depends
at most quadratically on x. And that therefore the

∫
dp is in each instance

(formally) Gaussian.
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and by direct integration obtain

K(x, τ ; y, 0) =
√

1
ihD exp

{
i
�
S(x, τ ; y, 0)

}
(41.1)

S = m
2

(x−y)2

τ and D = −Sxy = m
τ

But we can, on the other hand, use Kelvin’s “method of stationary phase”26 to
obtain an asymptotic evaluation of the integral in the classical limit � ↓ 0: from
g ′(℘) = 0 obtain ℘ = m(x− y)/τ giving

g ′′(℘) = −τ/m and g(℘) =
[
1
2m

(
x−y
τ

)2 ]
τ

whence

lim
�↓0

K(x, τ ; y, 0) = lim
�↓0

1
h

∫
e

i
�
g(p) dp

∼ 1
h

√
2π�/g ′′(℘) ei [

1
�
g(℘)+ π

4 ]

=
√

m
ihτ exp

{
i
�

[
1
2m

(
x−y
τ

)2 ]
τ
}

(41.2)

The point to notice is that the right sides of (41.1) and (41.2) are identical , but
the context of the discussion has been too simple to make the point convincingly.
Look again therefore to the particle in free fall : here27

g(p;x, y, τ) ≡ p ·(x− y)−H(x, p, τ) τ

H(x, p, τ) = 1
2mp

2 +mgx− 1
2gpτ

which when introduced into (40) gives

K(x, τ ; y, 0) =
√

1
ihD exp

{
i
�
S(x, τ ; y, 0)

}
(42)

S = m
2

(x−y)2

τ −mg x+y
2 τ and D = −Sxy = m

τ

On the other hand, g ′(℘) = (x− y) − 1
m℘τ + 1

2gτ
2 = 0 supplies

℘ = m
τ (x− y + 1

2gτ
2)

whence
g(℘) = m

2
(x−y)2

τ −mg x+y
2 τ

g ′′(℘) = −τ/m

26 See again (101.2) in Chapter 0.
27 In the following discussion I highlight terms in which some approximation

has actually taken place: this usually but not always means abandonment of
terms of O(τ2).
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Introducing this information into

lim
�↓0

K(x, τ ; y, 0) = lim
�↓0

1
h

∫
e

i
�
g(p) dp

∼ 1
h

√
2π�/g ′′(℘) ei [

1
�
g(℘)+ π

4 ] (43)

we recover precisely (42). Look finally to the harmonic oscillator , where

g(p;x, y, τ) ≡ p ·(x− y)−H(x, p, τ) τ

H(x, p, τ) = 1
2mp

2 + 1
2mω

2x2 + 1
4 (1 − 2xp)ω2τ

+ 1
3

{
1

2mp
2 + 1

2mω
2x2

}
ω2τ2

Introduction into (40) gives a result of the design (42), except that now

S(x, τ ; y, 0) = m
2

(x−y)2

τ − 1
2mω

2 x2+xy+y2

3 τ and D = −Sxy = m
τ (44)

On the other hand, g ′(℘) = (x− y) − 1
m (1 + 1

3ω
2τ2)℘τ + 1

2gxτ
2 = 0 supplies

℘ = m
τ (1 + 1

3ω
2τ2)–1(x− y + 1

2gxτ
2)

whence (entrusting the heavy labor to Mathematica)

g(℘) = m
2

(x−y)2

τ − 1
2mω

2 x2+xy+y2

3 τ

g ′′(℘) = −(1 + 1
3ω

2τ2) · τ/m

which when introduced into (43) give back precisely (42/44). Remarkably (story
of a wasted afternoon!), we achieve success in this instance only if we retain the
blue term, which is of order O(τ2).

It would be easy to argue that analysis of a quantum mechanical system
reduces in the end to analysis of its (Green’s function or) “propagator”. . .whose
responsibility it is to guide the dynamical motion of the wave function, and into
the design of which all spectral information is encoded:28

K(x, t; y, 0) =
∑
n

ψn(x)e−
i
�
Entψ∗

n(y) (45)

What we have now—in three specific contexts—demonstrated is a fact not at
all evident in (45); namely, that “quantum mechanics is briefly classical” in this
precise sense:

lim
�↓0

K(x, t; y, 0)
{

is a “classical object,” but provides an
accurate description of K(x, t; y, 0) if t is small (46)

28 I dismiss as an elegant quibble the observation the behind the scenes lurks
the representation-independent object

U(t, 0) =
∑
n

|n)e−
i
�
Ent(n|

to which the preceding remark more properly relates.
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It is that fact, used in combination with an elementary consequence of this
representation

K(x, t2; y, t0) =
∫
K(x, t2; ξ, t1) dξ K(ξ, t1; y, t0)

of the composition rule

U(t2, t0) = U(t2, t1)U(t1, t0) : t2 > t1 > t0

. . . that lies at the base of the Feynman formalism. The idea (and the source
of the “path integral” concept) is to achieve finite quantum propagation by
iteration of infinitesimally brief (therefore classical) propagation.29 It is in an
effort to secure the credentials of the method that I turn now to exploration
of this question: Does (46) pertain generally—generally enough to embrace at
least of systems of the form H = 1

2m p2 + V (x) —or is it special to our three
examples?

Notice first that if we (i) look to the τ -expansion of the logarithm of the
Fourier transform

1
h

∫
exp

{
i
�
g(p;x, y, τ)

}
dp

g(p;x, y, τ) ≡ p ·(x− y) − H(x, p, τ) τ

with

H(x, p, τ) ≡
[

1
2mp

2 + V0 + V1x+ V2x
2
][

1 + 2
3mV2τ

2
]
−

[
1

2m (V1 + 2V2x)
]
pτ

or if (which is equivalent, but easier) we (ii) look to the τ -expansion of the
Legendre transform of g(p;x, p, τ) . . .we are, by either procedure (and with the
now indispensable assistance of Mathematica), led to

S(x, τ ; y, 0) = m
2

(x−y)2

τ −
{
V0 +V1

x+y
2 +V2

x2+xy+y2

3

}
τ

from which all three examples can be recovered as special cases. The surprising/
disappointing fact, however, is that there exists no modified H which by either
procedure yields30

S(x, τ ; y, 0) = m
2

(x−y)2

τ −
{
V0 +V1

x+y
2 +V2

x2+xy+y2

3 +V3
x3+x2y+xy2+y3

4 + · · ·
}
τ

29 For time-independent systems we have

U(t) =
[
U(t/N)

]N
which we take to the limit N → ∞.

30 The essence of the argument: The physics of the matter stipulates that p
enters at most quadratically into the design of g(p;x, y, τ). Legendre
transformation yields therefore an S(x, τ ; y, 0) into which y enters at most
quadratically. The blue terms lie therefore out of reach.
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Means of escape from this impasse are provided by Zassenhaus’ formula

eA+B = eA eB eC2eC3 · · · with




C2 = − 1
2 [A , B ]

C3 = 1
6 [A , [A , B ]] + 1

3 [A , [A , B ]]
...

which entails
e(A+B )λ = eAλeBλeC2λ

2
eC3λ

3 · · ·

Use this in combination with eMλ =
[
eM λ

N

]
N to obtain

e(A+B )λ =
[
eA λ

N eB λ
N eC2(

λ
N )2eC3(

λ
N )3 · · ·

]
N

=
[
eA λ

N eB λ
N

(
I + terms of order ( λ

N )2
)]

N

↓
=

[
eA λ

N eB λ
N

]
N as N → ∞ (47)

which has become known as the “Trotter product formula.”31 One might, on
this basis, write

e−
i
�
( 1
2m p2+V )t =

[
e−

i
�

1
2m p2τ · e− i

�
V ( x )τ

]
N with τ ≡ t/N

=
x

[
e−

i
�
H(x,p)τ

]
p
·

x

[
e−

i
�
H(x,p)τ

]
p
· · ·

x

[
e−

i
�
H(x,p)τ

]
p

31 The original reference (almost never cited) is Hale F. Trotter,“On the
product of semi-groups of operators,” Proc. Amer. Math. Soc. 10, 545 (1959).
Trotter wrote (at Princeton) in the formally “mathematical” style that most
physicists find off-putting, though he took his motivation from problems having
to do with the numerical solution of partial differential equations. More
accessible is Masuo Suzuki, “Generalized Trotter’s formula and systematic
approximants of exponential operators and inner derivations with applications
to many-body problems,” Comm. Math. Phys. 51, 183 (1976). Suzuki remarks,
by the way, that the Zassenhaus C ’s can be computed recursively from

C2 = 1
2!

[
∂
∂λ

(
e−Bλe−Aλe(A+B )λ

)]
λ=0

C3 = 1
3!

[
∂
∂λ

(
e−C2λ

2
e−Bλe−Aλe(A+B )λ

)]
λ=0

C4 = 1
4!

[
∂
∂λ

(
e−C3λ

3
e−C2λ

2
e−Bλe−Aλe(A+B )λ

)]
λ=0

...

The brief account of Trotter’s formula presented as an appendix to Chapter I
in Schulman12 appears to have been adapted from the appendix to E. Nelson,
“Feynman integrals & the Schrödinger equation,” J. Math. Phys. 5, 332 (1964).
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Hit the final product with
• (x| on the left,
• |y) on the right, and
• insert a copy of

∫∫
|p ′)dp ′(p ′|x ′)dx ′(x ′| between each of the factors

and we are led back to a statement of the design (12) that marked our point
of departure. The implied assertion is that we can abandon the distinction
between H and H; i.e., that in place of (40) we can write

K(x, τ ; y, 0) = 1
h

∫
exp

{
i
�
g(p;x, y, τ)

}
dp

g(p;x, y, τ) ≡ p ·(x− y) −H(x, p, τ) τ

=
√

m
iht exp

{
i
�
S(x, τ ; y, 0)

}
(48.1)

S(x, τ ; y, 0) ≡ m
2

(x−y)2

τ − V (x)τ (48.2)

Equations (48), for all their elegant simplicity, might seem like mere wishful
thinking, since (compare (33) and (34))

1
2mS

2
x + V + Sτ = 1

2mVx

{
− 2m(x− y) + τ2Vx

}
︸ ︷︷ ︸

|—not of the form 0 +O(τ2)

and (which is perhaps more to the point)

− �
2

2mKxx + V K − i�Kτ = K · 1
2m

√
2π

{
− 2m(x− y)Vx + i�Vxxτ + V 2

x τ
2
}

︸ ︷︷ ︸
|—same criticism

Those criticisms notwithstanding, Feynman proposes to set

SFeynman(x, τ ; y, 0) =




{
1
2L

(
x−y
τ , x

)
+ 1

2L
(
x−y
τ , y

)}
τ else

L
(
x−y
τ , x+y

2

)
τ else (as above)

L
(
x−y
τ , x

)
τ

(49)

depending on the specific design of the Lagrangian L(ẋ, x), the selection to be
made case by case, subject to the pragmatic criterion implicit in this question:
Does the selection lead to the “correct” Schrödinger equation? We cannot object
to Feynman’s adoption of such a criterion if his objective is simply share the
“pleasure in recognizing old things from a new point of view,” but so long
as it remains in place “Feynman quantization” loses any claim to conceptual
autonomy . . . though it was put forward in “the hope that the new point of
view will inspire an idea for the modification of present theories, a modification
necessary to encompass present experiments.”
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To gain a better sense of what Feynman’s proposals (49) entail, let us back
up to (28)

S(x, τ ; y, 0) = m
2

(x−y)2

τ −
∫ τ

0

V
(
y + x− y

τ t′
)
dt′

and observe that simple adjustment of the variable of integration supplies

= m
2

(x−y)2

τ − τ
x−y

∫ x

y

V (x′) dx′

= m
2

(x−y)2

τ − V
(
µ(x, y)

)
τ

where µ(x, y) marks the point at which the potential assumes (with respect to
the interval [x, y] ) its mean value. In this notation (33.1) becomes

1
2mS

2
x + V (x) + Sτ (50)

=
{
V (x) − V (µ) − (x− y)V ′(µ)µx

}
+ 1

2m

[
V ′(µ)µx

]2

· τ2

where the definition of µ(x, y) entails{
etc.

}
= V (x) − V (µ) − (x− y) · d

dx

[
1

x−y

∫ x

y

V (x′) dx′
]

= 0

Feynman proposes to abandon that definition: in its place he would

define µ(x, y) by V (µ) = 1
2

[
V (x) + V (y)

]
, else

simply set µ(x, y) = 1
2 (x+ y), else

simply set µ(x, y) = x

and live with the fact that
{
etc.

}
�= 0. That he enjoys any success at all is

surprising. Let’s see how he does it:

Origin of the Schrödinger equation, according to Feynman. Feynman would have
us write

K(x, t+ τ ;x0, t0) = K + τKt + 1
2τ

2Ktt + · · ·

=
∫
K(x, t+ τ ; y, t) dyK(y, t;x0, t0)

=
∫

1
A(τ)

exp
{

i
�

[m
2

(x−y)2

τ − τV (µ) + · · ·
]}
K(y, t;x0, t0) dy

=
∫

1
A(τ)

exp
{

i
�

[m
2

(x−y)2

τ

]}{
1 − i

�
τV (µ) + · · ·

}
K(y, t;x0, t0) dy

on the basis of which we expect to have

K =
[ ∫

1
A(τ)

exp
{

i
�

[m
2

(x−y)2

τ

]}{
1 − i

�
τV (µ) + · · ·

]}
K(y, t;x0, t0) dy

]
τ↓0

Kt =
[

∂
∂τ

∫
1

A(τ)
exp

{
i
�

[m
2

(x−y)2

τ

]}{
1 − i

�
τV (µ) + · · ·

]}
K(y, t;x0, t0) dy

]
τ↓0

...
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where the blue terms play no role in subsequent analysis, and will henceforth
be dropped. The idea now is to exploit the Gaussian representations of the
δ-function and its derivatives, as summarized at (100) in Chapter 0. To that
end, introduce ε =

√
i�τ/m so as to achieve i

�

m
2τ = − 1

2ε2 . The first of the
preceding equations then becomes

K(x, t;x0, t0) =
[ ∫

1
B(ε)

exp
{
− 1

2

[
x−y
ε

]2}
K(y, t;x0, t0) dy

]
ε↓0

=
∫
δ(x− y)K(y, t;x0, t0) dy

provided we set32

1
B(ε)

= 1√
2π

(
1
ε

)1 which entails 1
A(τ)

=
√

m
2πi�τ

In next higher order we have

Kt = i�
2mε

[
∂
∂ε

∫
1

B(ε)
exp

{
− 1

2

[
x−y
ε

]2}{
1 − m

�2V (µ)ε2
}
K(y, t;x0, t0) dy

]
ε↓0

= i�
2m

[ ∫
1√
2π

exp
{
− 1

2

[
x−y
ε

]2}{(
1
ε

)3[(x−y
ε

)2(1 − 2m
�2 V (µ)ε2

)
− 1

]

−
(

1
ε

)1 2m
�2 V (µ)

}
K(y, t;x0, t0) dy

]
ε↓0

= 1
i�

∫ {
− �

2

2mδ
′′(x− y) + V

(
µ(x, y)

)
δ(x− y)

}
K(y, t;x0, t0) dy

Thus do we obtain

i�Kt(x, t;x0, t0) =
{
− �

2

2m
∂2

∂x2 + V
(
µ(x, x)

)}
K(x, t;x0, t0)

which—since

µ(x, x) = x by every plausible construction of µ(x, y)

—is precisely the Schrödinger equation. Which, as we are in a position now
to appreciate, we would have missed had we followed Feynman’s initial impulse,
which was to set A = constant. Feynman reportedly raced through the
argument too fast for Jehle to follow or transcribe. The reader who takes the
trouble to schlog through the details (“a small nightmare of Taylor
expansions and Gaussian integrals” in the view of Schulman, but not really
so bad if carefully managed) is certain to be rewarded by some sense of the
excitement which Feynman and Jehle felt on that occasion.33

32 We see here how Feynman adjusts his “normalization factors” 1
A after the

fact , in order to make things work out right.
33 For an informative account of the circumstances surrounding Feynman’s

own first extraction of the Schrödinger equation from the path-integral idea,
see D. Derbes, “Feynman’s derivation of the Schrödinger equation,” AJP 64,
881 (1996). The argument presented here—which departs organizationally from
Feynman’s—was taken from quantum mechanics (), Chapter 1, page 77.
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Feynman based his construction on an approximation to S(x, τ ; y, 0) which
—though recommended (17 years after the fact!) by Trotter’s formula—is so
crude that it fails to extinquish the 0th-order

{
etc.

}
-term that appears on the

right side of (50). It has become clear that Feynman’s surprising success can
be attributed to the fact that µ(x, y) enters into his final equation only as
µ(x, x) = x , and

{
etc.

}
does vanish at y = x .

Extension to more general dynamical systems. Let
{
x1, x2, x3

}
refer to an

inertial Cartesian frame in physical 3-space, where a particle m moves subject
to the conservative forces that arise from the potential V (xxx). To describe the
classical motion of the particle we write

L(xxx, ẋxx) = 1
2m

3∑
k=1

ẋkẋk − V (xxx)

The associated Hamiltonian is

H(xxx, ppp) = 1
2m

3∑
k=1

pkpk + V (xxx)

Working in the uniform rectilinear short-time approximation

S(xxx, τ ;yyy , 0) = m
2

3∑
k=1

(xk − yk)2

τ
− V (µµµ(xxx, yyy)) τ

(or even in the crude approximation µµµ = xxx), we construct

KC(xxx, τ ;yyy , 0) =
√

( 1
ih )3D exp

{
i
�
S

}

and find by the argument already rehearsed that

ψ(xxx, t) ≡
∫
KC(xxx, t;yyy , t− τ)ψ(yyy , t− τ)d3y satisfies

{
− �

2m∇2 +V
}
ψ = i�∂tψ

No sweat, no surprise.

But in 3-dimensional work we often find it convenient to employ curvilinear
coordinates (which classically, in the presence of holonomic constraints, become
“generalized coordinates”). If (moving) curvilinear coordinates are introduced
by equations of the form

xk = xk(q1, q2, q3, t) : k = 1, 2, 3

then the Lagrangian becomes

L = 1
2m

{∑
i, j

gij q̇
iq̇j + 2

∑
i

aiq̇
i + b

}
− U
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with

gij(q, t) ≡
∑
k

∂xk

∂qi
∂xk

∂qj
, ai(q, t) ≡

∑
k

∂xk

∂qi
∂xk

∂t
, b(q, t) ≡

∑
k

∂xk

∂t
∂xk

∂t

and U(q, t) ≡ V (x(q, t)). The Hamilton assumes therefore the design

H(q, p, t) =
∑
k

pk q̇
k − L(q, q̇) with pi = m

∑
j

gij q̇
j +mai

= 1
2m

∑
i, j

gij [pi −mai][pj −maj ] + (U − 1
2mb) (51)

If, as is most commonly the case, the q -coordinate system is not itself in motion
with respect to our inertial frame then we have this simplification:

↓
H(q, p) = 1

2m

∑
i, j

gij(q)pipj + U(q)

So far, so good. But when we attempt to make the formal substitutions

qi �→ q i and pi �→ p i

required to construct the corresponding Hamiltonian operator H we confront
(except in cases where gij and ai are constants) an operator ordering ambiguity ,
which becomes especially severe if the gij(q) refer not—as above—to the
Euclidean metric structure of physical 3-space but to the metric structure
of some curved manifold upon which we are attempting to write quantum
mechanics. For this and other reasons—we have lost our former description of
S(q, τ ; q0, 0), and possess no theory of Fourier transformations or of Gaussian
integration with respect to non-Cartesian coordinates—it would be premature
to pursue the path-integral formalism into this particular jungle until we have
gained a better sense issues involved . . . and that is an intricate story which I will
reserve for another occasion.34 I will, however, look to a somewhat attenuated
instance of some related issues:

To describe—relative to an intertial Cartesian frame—the motion of a
charged mass point in the presence of an impressed electromagnetic we write

L = 1
2mẋxx···ẋxx−V (xxx) + e

cAAA(xxx)···ẋxx (52)
V (xxx) ≡ eφ(xxx)

where the interesting new feature is the term linear in ẋxx with variable coefficient.
The associated Hamiltonian reads (compare (51))

H = 1
2m [ppp− e

cAAA ]···[ppp− e
cAAA ] + V

=
∑
k

{
1

2mp
2
k − e

mcpkAk + e2

2mc2A
2
k

}
+ V

34 In the meantime, see (for example) Chapter 24 in Schulman.12
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When we undertake to construct the associated H-operator we confront an
ordering problem which, however, in this simple instance “solves itself” in the
sense that it is entirely natural to write

pkAk �→ 1
2

{
pkAk(x) +Ak(x)pk

}
We are led thus to

H = 1
2m

∑
k

[ pk − e
c Ak ]···[ pk − e

c Ak ] + V

and to the Schrödinger equation{
1

2m

∑
k

[ �

i ∂k − e
cAk(x)]·[ �

i ∂k − e
cAk(x)] + V (x)

}
ψ = i�∂tψ (53)

This is the equation we undertake now to extract from the sum-over-paths
formalism. My argument this time adheres closely to the pattern of
Feynman’s.35 As a notational convenience I work in one dimension.

Work from

ψ(x, t+ τ) = ψ(x, t) + τ ψt(x, t) + · · ·

=
∫
KC(x, τ ; y, 0)︸ ︷︷ ︸ψ(y, t) dy

|
=

√
1
2πβD e−βS

with β ≡ 1/i� and S(x, τ ; y, 0) = m
2

(x−y)2

τ − V (x) τ + e
c
∫ τ

0
A(x) ẋ dt (which

entails D = m/τ). Using
∫ τ

0
A(x) ẋ dt =

∫ x

y
A(z) dz, we have

= e βV (x)τ

∫ √
m

2πτ β exp
{
−βm

2
(y−x)2

τ

}
exp

{
−β ec

∫ x

y

A(z)dz
}
ψ(y, t) dy

Owing to the presence of the red Gaussian (which becomes ever more sharply
peaked as τ ↓ 0) we can interpret ξ ≡ y − x to be small, and on that basis can
write ∫ x

y

A(z)dz = (x− y) · A(x) +A(y)
2

by the trapazoidal rule

= − 1
2ξ ·

[
A(x) +A(x+ ξ)

]
= −A(x)ξ − 1

2Ax(x)ξ2 + · · ·

ψ(y, t) = ψ(x, t) + ψx(x, t)ξ + 1
2ψxx(x, t)ξ2 + · · ·

35 See Chapter 4 in Schulman.12 I must confess that I have been unable to
make my own former line of argument (which used Gaussian representations of
the derivatives of the δ function) work in the present context.
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Putting the pieces together, we have

ψ(x, t) + τ ψt(x, t) + · · · =
∫ √

m
2πτ β exp

{
−βm

2
ξ2

τ

}

·
[
1 + βV (x)τ + · · ·

]
·
[
1 +

(
β ecA(x)ξ + β 1

2
e
cAx(x)ξ2

)
+ 1

2!

(
β ecA(x)ξ +

)2 + · · ·
]

·
[
ψ(x, t) + ψx(x, t)ξ + 1

2ψxx(x, t)ξ2 + · · ·
]
dξ

But ∫ +∞

−∞

√
m

2πτ β exp
{
−βm

2
ξ2

τ

}
ξ0dξ = 1

∫ +∞

−∞

√
m

2πτ β exp
{
−βm

2
ξ2

τ

}
ξ1dξ = 0

∫ +∞

−∞

√
m

2πτ β exp
{
−βm

2
ξ2

τ

}
ξ2dξ = 1

βm τ

so in order O(τ0) we have the reassuring triviality ψ(x, t) = ψ(x, t) while in
O(τ1) we have

ψt = β
{

1
2mβ2 ψxx + e

mcβ Aψx + e
2mcβ Axψ + e2

2mc2 A
2ψ + V ψ

}

which can be written {
1

2m [ �

i ∂x − e
cA ]2 + V

}
ψ = i�∂tψ

The 3-dimensional argument proceeds in exactly the same way.

Several comments are now in order: Mathematica informs us that
∫ +∞

−∞

√
m

2πτ β exp
{
−βm

2
ξ2

τ

}
ξndξ = [1 + (−1)n] 1√

2π
2

1
2 (n−1)Γ

(
n+1

2

)(
1

βmτ
) 1

2n

of which we have made use especially of the case n = 2. The general point is
that Gaussian integration serves to convert power series in ξ2 into power series
in τ . Secondly, we are in position now to understand the casual “or, if it proves
more convenient” with which Feynman asserts the effective equivalence of

trapazoidal rule :
∫ τ

0

V (x(t)) dt ≈ 1
2

[
V (x) + V (y)

]
τ

midpoint rule :
∫ τ

0

V (x(t)) dt ≈
[
V (x+y

2 )
]
τ

for the power series that result from setting y = x+ ξ differ only in O(ξ2).
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Gauge transformations, compensating fields, impressed magnetic fields and
the Aharonov-Bohm effect. I digress now to discuss some of the remarkable
ramifications of the seemingly innocuous adjustment

L0 −→ L ≡ L0 + e
cAAA(xxx)···ẋxx (54)

where L0 ≡ 1
2mẋxx···ẋxx− V (xxx)

and where e
c is the physically-motivated name given to the coupling constant

that describes the strength of the new ẋxx-linear term.

In one dimension (54) becomes

L0 −→ L = 1
2mẋ2 − V (x)︸ ︷︷ ︸ +e

cA(x) ẋ

L0

and we notice that the new term is a gauge term

e
cA(x) ẋ = d

dt

{
e
c

∫ x

A(z) dz
}

(55)

so contributes nothing to the classical motion. Its inclusion does, however,
entail modification

p ≡ mẋ −→ p ≡ mẋ + e
cA(x) (56)

of the equation that defines the “conjugate momentum,” and therefore induces
an adjustment in the design of the Hamiltonian:

H0 = 1
2mp2 + V (x) −→ H = 1

2m

[
p− e

cA(x)
]2 + V (x) (57)

The dynamical action responds additively to gauge transformation

S0(x, t; y, 0) −→ S(x, t; y, 0) = S0(x, t; y, 0) + e
c

∫ x

y

A(z) dz (58)

so the semi-classical propagator K0 ≡
√

i
�

∂2S0/∂x∂y · e i
�

S0 acquires a factor:

K0 −→ K = K0 · exp
{

i e
�c

∫ x

y

A(z) dz
}

(59)

The equations {
1

2m

(
�

i ∂x

)2 + V (x)
}

K0 = i�∂tK0

and {
1

2m [ �

i ∂x − e
cA(x)]2 + V (x)

}
K = i�∂tK

echo the relationship between H0 and H, and their equivalence is an immediate
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consequence of the “shift rule”

�

i ∂x exp
{
− i e

�c

∫ x

y

A(z) dz
}
• = exp

{
− i e

�c

∫ x

y

A(z) dz
}

[ �

i ∂x − e
cA(x)]2 •

We have been brought into contact here with an idea that lies at the base
of the theory of compensating (or “gauge”) fields: if ψ0 satisfies{

1
2m

(
�

i ∂x

)2 + V (x)
}

ψ0 = i�∂tψ0 (59)

then so also does ψ ≡ ei(e/�c)χ · ψ0 if χ is any (real) constant. The design of
(59) is, in this sense, “gauge invariant.” Gauge invariance is, however, lost if
we allow χ to become x-dependent, for as we have seen

ψ = ei(e/�c)χ(x) · ψ0

satisfies {
1

2m

[
�

i ∂x − e
cχ ′(x)

]2 + V (x)
}

ψ = i�∂tψ

The idea is—in place of (59)—to write{
1

2m

[
�

i ∂x − e
cA0(x)

]2 + V (x)
}

ψ0 = i�∂tψ0 (60)
↑—“compensating field”

and to assign to “gauge transformation” this expanded meaning:

ψ0 −→ ψ = ei(e/�c)χ(x) · ψ0

A0 −→ A = A0 + χ ′(x)

}
(61)

Then (60) is gauge invariant in the sense that under (61) it goes over into an
equation of the same design:{

1
2m

[
�

i ∂x − e
cA(x)

]2 + V (x)
}

ψ = i�∂tψ

Pushed only a little farther, the idea leads spontaneously to the “invention” of
Maxwellian electrodynamics.

But when we write L = 1
2mẋxx···ẋxx− V (xxx) + e

cAAA(xxx)···ẋxx or{
1

2m

[
�

i∇∇∇− e
cAAA(xxx)

]2 + V (xxx)
}

ψ = i�∂tψ (62)

we imagine ourselves to be coming from electrodynamics, where AAA → AAA +∇∇∇χ
is already in place (was inherited from BBB = ∇∇∇×AAA); the gauge invariance of (61)
is achieved by adopting this quantum mechanical enlargement

ψ0 −→ ψ = ei(e/�c)χ(x) · ψ0

AAA0 −→ AAA = AAA0 +∇∇∇χ(x)

}
(63)
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of the classical notion of an “electromagnetic gauge transformation.”36 When
we compare (61) with (63) we see that the locus of the novelty has switched
places.

Some aspects of my present subject are a bit slippery, and it is to get a
firmer classical/quantum mechanical grip upon them that I look now to this
concrete
example: charged particle in homogeneous magnetic field Let us

take the vector potential AAA to be given by

AAA = 1
2B


−y

+x
0


 : then BBB = ∇∇∇×AAA =


 0

0
B




describes a homogeneous magnetic field parallel to the z-axis. The Lagrangian
(52/54) has, in the assumed absence of a potential V , become

L = 1
2m

{
(ẋ2 + ẏ2 + ż2) + 2ω(−y ẋ + xẏ)

}
(64)

ω ≡ Be/2mc

and the equations of motion read

ẍ− 2ωẏ = 0
ÿ + 2ωẋ = 0

z̈ = 0

Mathematica informs us that the solution which links
{

xxx1, t1
}
←

{
xxx0, 0

}
can

be described

x(t) = x0 + 1
2

{
+ (x1 − x0) + (y1 − y0) cot ωt1

}
(1− cos 2ωt)

+ 1
2

{
− (y1 − y0) + (x1 − x0) cot ωt1

}
sin 2ωt

y(t) = y0 + 1
2

{
+ (y1 − y0)− (x1 − x0) cot ωt1

}
(1− cos 2ωt)

+ 1
2

{
+ (x1 − x0) + (y1 − y0) cot ωt1

}
sin 2ωt

z(t) = z0 +
{
(z1 − z0)/t1

}
t




(65)

The z-motion is an uninteresting unaccelerated drift: I excise it from the
discussion by setting z0 = z1 = 0. To render the remaining equations more
discussably transparent I place the endpoints in “standard position”

xxx0 =
(

x0

y0

)
=

(
0
0

)
and xxx1 =

(
x1

y1

)
=

(
0
1

)
36 A similar enlargment is required to fit the classical concept of a “Galilean

boost”
xxx0 −→ xxx = xxx0 − vvv t

into the non-relativistic quantum mechanical framework. For a good discussion
of the point see F. A. Kaempffer, Concepts in Quantum Mechanics (),
Appendix 7: “If Galileo had known quantum mechanics.”
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Then
x(t) = 1

2 cot ωt1 · (1− cos 2ωt)− 1
2 sin 2ωt

y(t) = 1
2 (1− cos 2ωt) + 1

2 cot ωt1 · sin 2ωt

Solve for cos ωt and sin ωt. Use cos2 ωt + sin2 ωt = 1 to obtain the orbital
equation (

x− 1
2 cot ωt1

)2 +
(
y − 1

2

)2 =
(

1
2 sin ωt1

)2

The orbit is a circle, centered at

x�(t1) = cos ωt1
2 sin ωt1

and y� = 1
2

with radius
R(t1) =

∣∣ 1
2 sin ωt1

∣∣
The radius is a periodic function of the arrival time

R(t1) = R(t1 + T) : T ≡ 2π/ω

and becomes infinite when t1 = nT : n = 0, 1, 2, . . . The particle advances
clockwise around the circle with constant angular velocity Ω ≡ 2ω. Its linear
speed is v = ΩR, so we have

conserved angular momentum L = 2mωR2

= mω
2 sin2 ωt1

= 2mω
π (orbital area)

= 2mω
πB (orbital flux)

conserved energy E = 1
2m(2ωR)2

= ωL

Both are periodic functions of t1, and both become infinite at t1 = nT . When,
with the assistance of Mathematica, we feed (65) into S =

∫
L dt we obtain

S(xxx, t;xxx0, 0) = 1
2mω

{
cot ωt

[
(x− x0)2 + (y − y0)2

]
+ 2(x0y − y0x)

}
(66)

+ 1
2m

(z − z0)2

t

where the subscripts have now been dropped from x1 and t1. The Hamiltonian
H = ppp···ẋxx− L latent in (64) is

H = 1
2m

{[
px + mωy

]2 +
[
py −mωx

]2 + p2
z

}
so the Hamilton-Jacobi equation reads

1
2m

{[
Sx + mωy

]2 +
[
Sy −mωx

]2 + S2
z

}
+ St = 0
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of which, as a calculation confirms, the S described above is in fact a solution.
Equation (66) agrees precisely (except for a misprinted sign) with the result
quoted on page 167 of Pauli.6 That Pauli was even aware of the result is a
little bit surprising, since the derivation of (66) requires some fairly heavy
calculation—duck soup for Mathematica, but heroic if done with paper and
pencil; Pauli, however, “knew everything”—especially things having to do with
the semi-classical physics of magnetically perturbed quantum systems, in which
there was, for experimental reasons, a high level of interest during the first
quarter of the 20th Century.

In the limit t ↓ τ (66) becomes

S(xxx, τ ;xxx0, 0) = m

2
(x−x0)

2+(y−y0)
2+(z−z0)

2

τ + mω(x0y − y0x)

− 1
6mω2

[
(x− x0)2 + (y − y0)2

]
τ + · · ·

Observe that the term of O(τ0) is correctly reproduced by Feynman’s “midpoint
rule:”

mω
[
− y+y0

2 (x− x0) + x+x0
2 (y − y0)

]
= mω(x0y − y0x)

So much for the classical physics of a charged particle in a homogeneous
magnetic field. We note in passing that in the Old Quantum Theory one would
set

angular momentum = � · (integer)

and that this would have entailed

energy = �ω · (integer)

orbital flux = π �c
e · (integer)

= hc
e ·

integer
2

Turning now to the quantum theory of the system, we construct the Van Vleck
determinant

D = (−)2
∣∣∣∣−mω cot ωt −mω

mω −mω cot ωt

∣∣∣∣ =
(

mω
sin ωt

)2

assemble Pauli’s semi-classical propagator

Kc(xxx, t;xxx0, 0) =
√(

1
ih

)2
D exp

{
i
�

S
}

(67)

= mω
ih sin ωt exp

{
i
�

1
2 mω

{
cot ωt

[
(x−x0)

2+(y−y0)
2
]
+2(x0y−y0x)

}}
and, with Mathematica’s assistance, confirm Pauli’s observation that KC is in
fact and exact solution of the Schrödinger equation

1
2m

{[
�

i ∂x + mωy
]2 +

[
�

i ∂y −mωx
]2}

ψ = i�∂tψ (68)
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. . . nor are we particularly surprised by this development: we expect to enjoy
similar success when the components of AAA are arbitrary linear functions of{

x, y, z
}
, even in the presence of a potential V that depends arbitrarily—but

at most quadratically—on those variables. More transparently,

lim
t↓τ

Kc(xxx, t;xxx0, 0) = m
ihτ exp

{
i
�

m
2

(x−x0)
2+(y−y0)

2

τ

}
↓
= δ(x− x0)δ(y − y0) in Gaussian representation

We are now assured that all the spectral properties (eigenvalues/eigenfunctions)
of the system are encrypted into the design of the right side of (67), even
though that expression is assembled from classical components . . . but have yet
to consider how such information might be extracted.

Bringing z back into play contributes an
{

x, y
}
-independent additive term

to S, and therefore a multiplicative factor to the propagator:

Kc(xxx, t;xxx0, 0) −→ Kc(xxx, t;xxx0, 0) ·
√

m
iht exp

{
i
�

m
2

(z−z0)
2

t

}
Observe finally (and relatedly) that when the vector potential is subjected to a
gauge transformation AAA→ AAA +∇∇∇χ the action responds

S(xxx, t;xxx0, 0) −→ S(xxx, t;xxx0, 0) + e
c

∫ t

0

ẋxx···∇∇∇χ dt′ = S + e
c

∫ xx

xx0

∇∇∇χ(ξξξ)···dξξξ

= S + e
c
[
χ(xxx)− χ(xxx0)

]
so the propagator responds

Kc(xxx, t;xxx0, 0) −→ ei(e/�c)χ(xx) ·Kc(xxx, t;xxx0, 0) · ei(e/�c)χ(xx0) (69)

But this is precisely the rule to which we are led when we bring to the spectral
representation

K(xxx, t;xxx0, 0) =
∑

n

ψn(xxx)e−
i
�

Entψ∗
n(xxx0)

the conclusion
ψ −→ ei(e/�c)χ(xx) · ψ

to which we were led at (63). This final remark is, of course, not specific to the
example that has recently concerned us . . . and here ends the discussion of that
example.

I turn finally to discussion of a topic which illustrates the “pleasure of
recognizing old things from a new point of view” and serves very nicely to
demonstrate that there “are problems for which the new point of view offers
a distinct advantage.” Feynman (see again his Postulate II on page 10) would
have us ascribe to each “path” (xxx, t)← (xxx0, t0) a

path amplitude = 1
Ae

i
�

∫
path

L(ẋx,xx) dt
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We saw at (54) how to “turn on a magnetic field,” and see now that such a
physical act entails a multiplicative adjustment of the probability amplitude
ascribed to each individual path:

path amplitude −→ path amplitude · ei(e/�c)
∫
path

AAA(xx)···ẋx dt

In any reasonable world (though not in a world where paths are allowed to
become “almost nowhere differentiable,” and thus to deny meaning to ẋxx) we
expect—alternatively but more usefully—to be able to write

path amplitude −→ path amplitude · ei(e/�c)
∫
path

AAA(xx)···dxx

In , Y. Aharonov & D. Bohm37 considered experimental designs in which
becomes natural to say of a charged particle that it gets from source to detector
by one or the other of only two alternative paths:

path #2−−−−−−−−−−−−−−−−−−−→|
source detector
|−−−−−−−−−−−−−−−−−−−→

path#1

The effect of the magnetic field, under such circumstances, is to introduce a

phase difference = (e/�c)
{ ∫

path #1

−
∫

path #2

}
= (e/�c)

∮
AAA(xxx)···dxxx

even if BBB = ∇∇∇×AAA = 000 along the entire course of both paths; the quantum
particle is responsive to “remote” magnetic fields . . . for this simple reason: by
Stokes’ theorem

= (e/�c)
∫∫
∇∇∇×AAA···dσσσ

= (e/�c) · (enveloped magnetic flux)

so it is important only that the path-bounded loop envelop magnetic flux, not
that BBB �= 000 on the loop itself. Classically, a magnetic field announces its
presence to a charged particle through the gauge-invariant construction

FFF = (e/c) ẋxx×BBB = (e/c) ẋxx×(∇∇∇×AAA)

while Aharonov & Bohm have isolated a quantum phenomenon in which the
relevant construction is∮

AAA(xxx)···dxxx : gauge invariant by
∮
∇∇∇χ···dxxx = 0

37 “Significance of electromagnetic potentials in quantum theory,” Phys. Rev.
115, 485.
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In neither case is AAA itself observable; the two theories sense the vector potential
in distinct but equally gauge-invariant ways. And if classical physics assigns no
importance to

∮
AAA(xxx)···dxxx it does assign high importance to the closely related

construct

“electromotive force” ≡
∮

EEE(xxx)···dxxx

=
∫∫
∇∇∇×EEE ···dσσσ

= − ∂
∂t

∫∫
BBB ···dσσσ

= − ∂
∂t (enveloped magnetic flux)

which provides yet a second mechanism by which magnetic fields acquire
“remote” consequences. Aharonov & Bohm gained analytical sharpness by
looking to a very simple two-path situation: Feynman, in less specialized
situations, might write

K(xxx, t;xxx0, t0) = 1
A

∑
paths

e
i
�

S[path]

↓

= 1
A

∑
paths

e
i
�

S[path] · ei(e/�c)
∫
path

AAA(xx)···dxx

to describe the effect of “turning on a magnetic field.” The gauge transformation
AAA → AAA +∇∇∇χ contributes additively to each

∫
path

AAA(xxx)···dxxx a path-independent
function of the endpoints . . . which leaks out of the summation process to give
us back precisely (69).

Some historical remarks: Aharonov and Bohm, who in  were at the
University of Bristol, were in some respects anticipated by W. Eherberg &
R. E. Siday.38 But they were using classical methods to study a quantum
mechanical problem (electron optics), and seem to have been at pains to argue
the absence of an AB effect. Aharonov & Bohm doe not allude in their brief
paper to the path integral formalism (much less to its singular aptness), nor
do Feynman & Hibbs allude to the AB effect; Feynman does, however, provide
a luminous discussion of the AB effect in §15–5 of The Feynman Lectures on
Physics: Volume II (). But his ostensible subject there is electrodynamics,
not quantum mechanics, and he makes no reference to the path integral method.
In  Michael Berry—also at the University of Bristol—published the paper39

38 “The refractive index in electron optics and the principles of dynamics,”
Proc. Phys. Soc. London B62, 8 (1949). I have heard reports that, at an even
earlier date, N. van Kampen—then a visitor at Columbia—assigned what was
to become the Aharanov-Bohm effect to his quantum students as a homework
problem!

39 “Quantal phase factors accompanying adiabatic changes,” Proc. Roy. Soc.
London A392, 45 (1984).
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that launched the theory of “geometrical phase.” He points out already in
that first paper that the AB effect provides an instance of geometrical phase,
but makes no reference to the Feynman formalism. The classic papers (by
Aharonov & Bohm, Berry and many others) in this twin field40 are reproduced
in A. Shapere & F. Wilczek, Geometric Phases in Physics (), but I find
in that collection only one paper41 that makes explicit use of path integral
methods. There seems to be an unaccountable hole in the literature.

Sitting down and actually doing a path integral. Look, for illustrative purposes,
to the system of paramount importance to Feynman himself—the oscillator

L = 1
2m(ẋ2 − ω2x2)

which at ω ↓ 0 becomes the free particle. The classical action, in short time
approximation, was found at (44) to be given by

S(x, τ ; y, 0) = m
2

(x−y)2

τ − 1
2mω2 x2+xy+y2

3 τ

so our assignment is to evaluate

K(x, t; x0, 0) = lim
N↑∞

(
m

ihτ

)N+1
∫
· · ·

∫
exp

{
im
2�τ

N+1∑
k=1

[
(xk − xk−1)

2 (70)

− 1
3 (ωτ)2(x2

k + xkxk−1 + x2
k−1)

]}
dx1 · · · dxN

with xN+1 = x and τ = t/(N + 1) . We already know many things about K:
that it satisfies

− �
2

2mKxx + 1
2mω2K = i�Kt

and is given in fact by (39), which can be obtained by a great variety of means.
To that list we want now to add another entry: recovery of (39) by execution
of Feynman’s program (70). That in itself can be accomplished in many ways.
I have set things up with the intention to exploit the n-dimensional Gaussian
integral formula42

∫ +∞

−∞
· · ·

∫ +∞

−∞
eiyyy···xxxe−

1
2xxx···Axxx dx1 · · · dxn =

(2π)
n
2

√
det A

e−
1
2yyy···A–1yyy (71)

40 For a good introduction to the essentials of both of its parts see D. Griffiths,
Introduction to Quantum Mechanics (), §10.2.

41 Hiroshhi Kuratsuji & Shinji Iida, “Effective action for adiabatic process:
dynamical meaning of Berry and Simon’s phase,” Prog. Theo. Phys. 74, 439
(1985).

42 For the remarkably simple proof, see (for example) Harald Cramér,
Mathematical Methods of Statistics (), pages 99 and 118–121.
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where it is assumed that A is real and symmetric, and that its eigenvalues are
all positive (though we—on the usual grounds—will allow ourselves to relax the
latter assumption). As a first step, we satisfy ourselves that

exp
{

etc.
}

= e−
1
2 β(1−α)(x2 + x2

0) · e 1
2 β(2+α)(x0x1 + xN−1x)

· exp
{
− 1

2β(2 + α)
[
2 1−α

2+α

N−1∑
k=1

x2
k −

N−2∑
k=1

xkxk+1

]}

with β ≡ − im
�τ and α ≡ 1

3 (ωτ)2. Use 2 1−α
2+α = 2 − 3α + · · · = 2 − (ωτ)2 ≡ a,

drop the α’s on grounds that they can make no contribution in the limit τ ↓ 0
and obtain

= e−
1
2 β(x2 + x2

0) · eiyyy···xxxe−
1
2xxx···Axxx

with

xxx ≡




x1

x2

x3
...
xN−1

xN


 , yyy ≡




−iβx0

0
0
...
0

−iβxN


 , A ≡ β




a −1 0
−1 a −1

−1 a
. . .

a −1

−1 a




Notice that a is the only surviving repository of the ω that serves to distinguish
one oscillator from another, and oscillators in general from free particles. It
follows now from (70) by (71) that

K(x, t; x0, 0) = lim
N↑∞

(
m

ihτ

)N+1
2

(2π)
N
2

√
det A

e−
1
2 β(x2 + x2

0) · e− 1
2yyy···A–1yyy (72)

where the meanings of τ , yyy and A are all N -dependent.

We look first to the asymptotic evaluation of the determinant. Let

Dn(N) ≡
{

determinant of the n×n submatrix that stands in the
upper left corner of the N×N matrix A

Expansion on the top row gives the recursion relation

Dn = aβDn−1 − β2Dn−2 (73)

which—if (formally) we set
D0 = 0

and use D1 = βa

—is readily seen to reproduce the results of direct calculation. The idea now
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(for which I am indebted to Elliott Montroll43) is to notice that (73) can be
written

Dn − 2Dn−1 + Dn−2 = −(ωτ)2 Dn−1

or again
1
τ

[
Dn −Dn−1

τ
− Dn−1 −Dn−2

τ

]
= −ω2 Dn−1

with Dn ≡ ωτ Dn/β n. Now associate the Dn

{
n = 0, 1, 2, . . . , N

}
with the

values assumed by a continuous function D(ϑ) at discrete values of its argument

Dn = D(nτ)

and notice that the preceding difference equation becomes asymptotically the
differential equation

d2

dϑ2 D = −ω2D

which we want to solve subject to the initial conditions

D (0) = 0 : from D1 = ωτa→ 0 as τ ↓ 0
D′(0) = ω : from [D2 −D1]/τ = ω[(a2 − 1)− a] = ω as τ ↓ 0

Immediately D(ϑ) = sin ωϑ, so for large N we have (since n = N entails ϑ = t)

det A = DN = 1
ωτ βNDN → 1

ωτ βN sin ωt (74.1)

Turning now to the asymptotic evaluation of yyy···Byyy with B ≡ A
–1, the sparse

design of yyy entails

yyy···Byyy = B11y2
1 + (B1N + BN1)y1yN + BNNy2

N

so we have actually to obtain only the four corner elements of B , and the simple
design of A makes those quite easy to compute: we find

B11 = BNN =
DN−1

DN

=
DN−1

β DN

B1N = BN1 = βN−1 1
DN

= ωτ
β DN

43 “Markoff chains, Wiener integrals, and quantum theory,” Comm. Pure &
Appl. Math. 5, 415 (1952). See especially page 432. Montroll was highly
esteemed for his computational virtuosity, and (together with Julian Schwinger)
exerted a formative influence on my own early development. The paper here
in question sprang from an “abortive attempt (–) to develop a discrete
space-time quantum theory”—an effort in which Feynman’s publication5 caused
Montroll to lose interest.



46 Feynman quantization

giving

yyy···Byyy =
DN−1

β DN

[
(−iβx0)2 + (−iβx)2

]
+ 2 ωτ

β DN

(−iβx0)(−iβx)

= −β

[
(x2 + x2

0)
DN−1

DN

+ 2xx0
ωτ
DN

]

The exponential factors in (72) now combine to give

e−
1
2 β(x2 + x2

0) · e− 1
2yyy···A–1yyy = exp

{
1
2

m
i�τ

[
(x2 + x2

0)
{DN−1

DN

− 1
}

+ 2xx0
ωτ
DN

]}

= exp
{

i
�

m
2DN

[
(x2 + x2

0)
DN −DN−1

τ
− 2ωxx0

]}

But asymptotically

DN → D (t) = sin ωt

DN −DN−1

τ
→ D ′(t) = ω cos ωt

so we have

e−
1
2 β(x2 + x2

0) · e− 1
2yyy···A–1yyy → exp

{
i
�

mω
2 sin ωt

[
(x2 + x2

0) cos ωt− 2xx0

]}
(74.2)

Returning with (74) to (72) we obtain at last

K(x, t; x0, 0) =
[

lim
N↑∞

(
m

ihτ

)N+1
2 (2π i�τ

m )
N
2

√
ωτ

sin ωt

]
· exp

{
etc.

}
=

√
mω

ih sin ωt exp
{

i
�

mω
2 sin ωt

[
(x2 + x2

0) cos ωt− 2xx0

]}
(75)

—in precise agreement with (39). At (70) I tacitly assigned to Feynman’s
“normalization factor” A its Pauli valuation

√
ihτ/m. Had we (with Feynman)

left the value of A in suspension then we would, just above, have confronted[
lim

N↑∞

(
1
A

)N+1(2π i�τ
m )

N
2

√
ωτ

sin ωt

]
: exists only if A =

√
ihτ/m

This result is remarkable in several respects. We started with a short time
approximation to the classical oscillator action, but ended up with a formula in
which the exact oscillator action appears in the exponent. Equation (75) can
be written

K =
√

1
ih

∂2S
∂x∂x0

e
i
�S

S = mω
2 sin ωt

[
(x2 + x2

0) cos ωt− 2xx0

]
It is, in short, of precisely Pauli/Van Vleck’s design, though the time interval
t is now not infinitsimal but finite/arbitrary. Which is to say: now that all the
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tedious summing-over-paths lies behind us we were left with a result to which,
in effect, only a single path—the classical path—contributes. That magical
state of affairs persists, of course, when we proceed to the free particle limit
ω ↓ 0, where the result now in hand returns the familiar result

↓
=

√
m
iht exp

{
i
�

m
2 t

[
x2 − x2

0

]}
(76)

Had we “turned off the spring” at the outset, the sum-over-paths would have
been easier . . . but only marginally.

Stand back and squint at our accomplishment: we have been engaged in an
exercise in multivariable Gaussian integration . . . carried ultimately to the limit
in which the number of variables is allowed to become infinite. It has been an
argument of sufficiently many parts that it can be organized in a great many
ways. The argument presented here was taken from my quantum mechanics
() Chapter One, pages 42–48, and owes much to Montroll.44

We expect to enjoy similar success whenever the classical action can, at
short times, be satisfactorally approximated by a function which depends at
most quadratically on its arguments. Gaussian integration will in all such cases
be the name of the game. For many applications—for example: to quantum field
theory—that turns out to be not so severe a limitation as one might suppose.45

We cannot expect to be able—by any method—to construct exact
descriptions of the propagator K(x, t; x0, t0) except in a relatively limited
number of textbookish cases, and are therefore not surprised to discover that
we are frequently unable to evaluate the Feynman path integral. After all, we
are more often than not unable to evaluate—except numerically—the ordinary
integrals of functions of a single variable: integration is hard. We expect
generally to have to make do with approximation schemes, of one design or
another. One important recommendation of the Feynman method is that it
presents old problems in quite a new light—a light that invites the invention of
novel approximation methods.

That said, it can be reported that path integration is a field in which
great strides were taken during the last quarter of the 20th Century. A leading
figure in this effort has been Christian Grosche, at the Institut für Theoretische
Physik, Universität Hamburg. His Path Integrals, Hyperbolic Spaces, & Selberg
Trace Formulae () cites more than 500 contributions to the field, and
provides a vivid sense of the range and level of sophistication that has recently

44 In the old notes just cited I describe also several alternative lines of attack.
See also Chapter 6 in Schulman,12 and the references cited by him.

45 Michio Kaku, in Chapter 8 of his Quantum Field Theory (), begins
his survey of our subject with the claim that “the path integral approach has
many advantages over the other [quantization] techniques,” and proceeds to list
seven of its distinctive virtues.
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been achieved. In “How to solve path integrals in quantum mechanics,”46 which
provides an excellent survey of the present state of the field, Grosche claims it to
be “no exaggeration to say that we are able to solve today essentially all path
integrals in quantum mechanics which correspond to problems for which the
corresponding Schrödinger problem can be solved exactly.” But it is in more
abstract areas that lie farther afield (supersymmetric string theory, quantum
gravity), where “solving the Schrödinger equation” is not even the point at
issue, that the power of Feynman’s method becomes most pronounced.

Summing over what paths? Feynman writes

K(x, t; x0, 0) = (normalization factor) ·
∑
paths

e
i
�S[path from (x0,0) to (x,t)]

but to lend concrete meaning to the picturesque expression on the right he
would have us write the appropriate variant of (70).47 To describe the class
of paths he has in mind, the class implicit in (70), he draws something like
the N -node spline curves shown in Figure 1 and Figure 2, which we are to
imagine in the limit N ↑ ∞. It appears to have been Feynman’s view (see the
following figure) that his mathematical discovery was indicative—not in “as if”
terms, but literally—of an underlying physical fact: that particles really do
trace almost nowhere differentiable fractile-like curves in spacetime. And that
the concept of “velocity” survives, therefore, with only a statistical meaning.
The latter conclusion is not, in itself, radical: the theory of Brownian motion
leads, in its idealized formalism, to a similar conclusion, and so did Dirac’s
notion of “zitterbewegung.” I argue here that Feynman’s purported view (which
seems to me to reflect a naive realism unworthy of the man, and is supported
by no direct physical evidence) is untenable on these grounds: summation
over distinct classes of paths leads (at least in some instances) to identical
conclusions. This I demonstrate by example.

Look again to the one-dimensional oscillator

L = 1
2m(ẋ2 − ω2x2)

for which the dynamical path (x1, t1)← (x0, t0) is known to be described by48

xc(t) =
[

x0 sin ωt1 − x1 sin ωt0
sin ω(t1− t0)

]
cos ωt−

[
x0 cos ωt1 − x1 cos ωt0

sin ω(t1− t0)

]
sin ωt

Write
x(t) = xc(t) + λa(t) (77)

a(t) ≡
∞∑

n=1

an sin
{

nπ
t − t0
t1− t0

}
≡ x(t; a1, a2, . . .)

46 J. Math. Phys. 36, 2354 (1995), written jointly with F. Steiner.
47 . . . which as it stands is specific to the harmonic oscillator.
48 See quantum mechanics (), Chapter I, page 22. Or simply verify

that indeed ẍ + ω2x = 0 and x(t0) = x0, x(t1) = x1.
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Figure 4: Such a figure appears on page 177 of Feynman & Hibbs’
Quantum Mechanics and Path Integrals (). The accompanying
text suggests that Feynman entertained the view that particles really
do move about tracing nowhere-differentiable fractal-like trajectories
—this well before Benoit Mandelbrot introduced “fractal” into the
vocabulary of the physical sciences. I argue here that Feynman’s
view (if, indeed, he held such a view: certainly he allowed himself to
speak as though he did) is mathematically untenable and physically
unjustified.

to describe the elements of what we will now take to be the “class of admissible
paths.” The an serve to address the individual elements (paths) in the “space
of paths,” while λ is a formal device that will in a moment be set equal to unity.
The point to notice is that a(t0) = a(t1) = 0; i.e., that

x(t0;aaa) = x0

x(t1;aaa) = x1

}
for all aaa

Now insert xc + λa into S =
∫

L dt and obtain

S[x(t;aaa)] = S0 + λS1 + λ2S2
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where

S0 ≡ 1
2m

∫ t1

t0

{
ẋ2

c − ω2x2
c

}
dt = mω

2 sin ω(t1−t0)

[
(x2

1 + x2
0) cos ω(t1− t0)− 2x1x0

]
is already very well known, where

S1 ≡ m

∫ t1

t0

{
ẋcȧ− ω2xca

}
dt

= m

∫ t1

t0

{
− ẍc− ω2xc

}
a dt + ẋca

∣∣∣t1
t0

after integration by parts

= 0 because
{

xc(t) satisfies the equation of motion, and
a(t) vanishes at times t0 and t1

and where a calculation that exploits∫ π

0

cos mξ cos nξ dξ =
∫ π

0

sin mξ sin nξ dξ = π
2 δmn

supplies

S2 ≡ 1
2m

∫ t1

t0

{
ȧ2 − ω2a2

}
dt

= mπ
2T

∞∑
n=1

n2
[
1−

(
ωT
nπ

)2
]
a2

n with T ≡ t1− t0

Set λ = 1 and agree to

interpret
∑
paths

to mean lim
N↑∞

∫
· · ·

∫
(w1da1) · · · (wNdaN)

where the wn are “weight functions” that will presently be assigned meaning
in such a way as to make things work out right. We now have

K(x, t; x0, t0) = (normalization factor) · e
i
�S0(x, t; x0, t0)

· lim
N↑∞

∫
· · ·

∫
exp

{
i
�

mπ
2T

N∑
n=1

n2
[
1−

(
ωT
nπ

)2
]
a2

n

}
w1da1w2da2 · · ·

= (etc.) · lim
N↑∞

N∏
n=1

wn

∫
exp

{
− mπ

2i�T n2
[
1−

(
ωT
nπ

)2
]
a2

}
da

= (etc.) · lim
N↑∞

N∏
n=1

wn

{
m

2i�T n2
[
1−

(
ωT
nπ

)2
]}− 1

2

But a classic identity informs us (so does Mathematica) that
∞∏

n=1

[
1− ( z

nπ )2
]

= sin z
z

With that fact in mind, we set wn(T ) ≡
√

m
2i�T n and obtain

= (etc.) ·
√

ωT
sin ωT

= (normalization factor)
√

ihT
m ·

√
mω

ih sin ω(t1−t0)
e

i
�S0(x, t; x0, t0)
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We have now only to set

(normalization factor) =
√

m
ihT

to recover the familiar exact propagator for the harmonic oscillator.

The point is that we have here summed over a class of paths distinct
from that contemplated by Feynman—paths which (though they may exhibit
discontinuities and points of non-differentiability in the limit N ↑ ∞) are for
all finite N everywhere differentiable. And to the extent that∑

paths

is independent of the precise definition of “path space”

every particular path space loses any claim to “objective physical significance.”

The point has been developed in an especially sharp and revealing way
by C. W. Kilmister,49 whose pretty argument I now sketch. Retain (77) but
require of the functions a(t) only that a(t0) = a(t1) = 0. Develop L(x, ẋ) in
powers of λ:

L(xc + λa, ẋc + λȧ) = exp
{

λ
(

a
∂
∂xc

+ ȧ
∂
∂ẋc

)}
L(xc, ẋc)

=
∞∑

k=0

λkLk(xc, ẋc, a, ȧ)

Then

S[x(t)] =
∞∑

k=1

λkSk[x1, t1; x0, t0; a(t)]

Sk[x1, t1; x0, t0; a(t)] ≡
∫ t1

t0

Lk(xc, ẋc, a, ȧ) dt

Now set λ = 1 and notice in particular that

S0 = S[xc(t)] : the classical action

S1 =
∫ t1

t0

(
a

∂L
∂xc

+ ȧ
∂L
∂ẋc

)
dt

=
∫ t1

t0

a
(

∂L
∂xc
− d

dt
∂L
∂ẋc

)
dt− ∂L

∂ẋc
a

∣∣∣∣t1
t0

= 0 : Hamilton’s principle

Feynman would now have us write

K(x1, t1; x0, t0) = 1
A

∑
paths

exp
{

i
�

∑
k=0

Sk[x1, t1; x0, t0; a(t)]
}

= 1
Ae

i
�S0(x, t; x0, t0) ···

∑
paths

exp
{

i
�

∑
k=2

Sk[x1, t1; x0, t0; a(t)]
}

(78)

Thus far our results are quite general.

49 “A note on summation over Feynman histories,” Proc. Camb. Phil. Soc.
54, 302 (1958).
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Look now to systems of the specialized design

L(x, ẋ) = 1
2mẋ2 − V (x)

Quick calculation then supplies

L0 = 1
2mẋ2

c − V (xc)
L1 = need not be computed

L2 = 1
2mȧ2 − 1

2V ′′(xc)a2

...

Lk = − 1
k!V

(k)(xc)ak : k � 3

and (78) becomes

K = 1
Ae

i
�S0 ···

∑
paths

exp
{

i
�

∫ t1

t0

(
1
2mȧ2 − 1

2V ′′(xc)a2
)

dt
}

· exp
{
− i

�

∑
k=3

∫ t1

t0

1
k!V

(k)(xc)ak dt
}

(79)

Impose upon L(x, ẋ) the further restriction that (as in all non-magnetic cases
successfully treated thus far) V (x) depends at most quadratically upon its
arguments: under such circumstances we may as well write

V (x) = mgx + 1
2mω2x2

Then V ′′(xc) = mω2 and V (k)(xc) = 0 : the red factor in (79) becomes
xc-independent, and we have

K(x1, t1; x0, t0) = 1
A

∑
paths

exp
{

i
�

∫ t1

t0

1
2m

(
ȧ2 − ω2a2

)
dt

}
︸ ︷︷ ︸

···e
i
�S0(x1, t1; x0, t0)

|
—This will be necessarily of the form f(t1−t0)

however the path integral is defined!

Feynman would tune the interpretation of A(t1− t0) in such a way as to achieve

lim
t1↓t0

K(x1, t1; x0, t0) = δ(x1− x0)

From the remark clipped to our final result Kilmister draws this moral: The
systems that supplied the Feynman formalism with its classic successes are too
simple to distinguish one interpretation of “sum over paths” from another .
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The point at issue would assume importance if the Feynman formalism
were pressed into service as an autonymous quantization procedure—if distinct
and equivalent interpretations of∑

paths

: How? Over what class of paths?

were available and no Schrödinger equation were available to serve as arbitor.50

Predominance of the classical path. In §7 of the  RevModPhys paper, under
the head “Discussion of the wave equation: the classical limit,” Feynman writes
“. . . Dirac’s remarks were the starting point for the present development. The
points he makes concerning the passage to the classical limit � → 0 are very
beautiful, and I may perhaps be excused for reviewing them here.” His review—
anticipated at page 31 in the dissertation—is skeletal (as was Dirac’s), but is
spelled out greater didactic detail in §2–3 of Feynman & Hibbs. The essential
idea is simple enough: write

cos
{

1
�
(S − Sc)2

}
= real part of exp

{
i
�
(S − Sc)2

}
to model the effect of ranging over a population of paths x(t) that lie in the
immediate neighborhood of the classical path xc(t). As � ↓ 0 the oscillations,
except in the shrinking immediate neighborhood of xc(t), become more and
more densely spaced (see the following figure), and the integrated effect of
such paths is to cancel each other out. On the other hand, paths in the
immediate neighborhood of xc(t) contribute coherently to the sum-over-paths,
since—by Hamilton’s principle—the classical path resides at an extremum of
the action functional S[x(t)]. As Feynman & Hibbs sum up (no pun intended)
the situation: “. . . no path really needs to be considered [in the classical limit]
if the neighboring path has a different action, for the paths in the neighborhood
[then] cancel out [its] contribution [to the path integral].

But in each of the cases that in preceding discussion yielded successfully
to detailed analysis it emerged that only the classical path survived the path
integration process, even though we did not take � ↓ 0; i.e., that Kc was in fact
exact . I propose to consider how such a state of affairs comes about.

Let t0 < t1 < t2 and agree, for the moment, to work in one dimension.
Though it is fundamental that

K(x2, t2; x0, t0) =
∫

K(x2, t2; x1, t1) dx1K(x1, t1; x0, t0) (80)

50 The preceding material was adapted from quantum mechanics (),
Chapter I, pages 55–64. A simplified account of Kilmister’s paper can be
found in §3.5 of his Hamiltonian Dynamics (). For related material see
H. Davies, “Summation over Feynman histories: the free particle and the
harmonic oscillator,” Proc. Camb. Phil. Soc. 53, 651 (1957) and especially
S. G. Brush, “Functional integrals & statistical physics,” Rev. Mod. Phys. 33,
79 (1961), which provides an exhaustive guide to the older literature, and in §3
reviews several alternative “Methods for calculating functional integrals.”
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Figure 5: Graphs of cos
{

1
�
(S − Sc)2

}
with—reading from top to

bottom—decreasing values of �. The observation that only points in
the immediate neighborhood of Sc contribute asymptotically to the
value of

∫
f(S) cos

{
1
�
(S − Sc)2

}
dS was attributed by Feynman to

Dirac but is in fact ancient: it lies at the heart of all techniques
addressed to the “asymptotic evaluation of integrals.”

we recognize that the Pauli/Van Vleck replacement K → Kc yields a statement

Kc(x2, t2; x0, t0) =
∫

Kc(x2, t2; x1, t1) dx1Kc(x1, t1; x0, t0) (81)

that is typically not valid. It becomes, however, approximately valid
• as the time intervals become short, or alternatively
• as � ↓ 0

but is exactly valid in some special cases. Look, for example, to the simplest
such special case, the free particle , where it is known that Kc = K; under
such a circumstance (81) is exact because indistinguishable from (80). It is
instructive, nonetheless, to bring a magnifying glass to the details. The right
side of (81) reads√

1
ihD(t2 − t1)

√
1
ihD(t1 − t0)

∫
e

i
�

{
S(x2, t2; x1, t1) + S(x1, t1; x0, t0)

}
dx1

=
√

1
2π β 1

t2−t1

√
1
2π β 1

t1−t0

∫
exp

{
− 1

2β
[

(x2−x1)
2

t2−t1
+ (x1−x0)

2

t1−t0

]}
dx1
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dx∫

Figure 6: A particle moves freely from
{

x0, t0
}

to
{

x1, t1
}
, then

freely again from
{

x1, t1
}

to
{

x2, t2
}
. Paths within this simple

population are identified by specifying the location of the solitary
nodal point x1. Analogs of the figure could be drawn for any system:
just change “freely” to “dynamically.”

with β ≡ m/i�. Ask Mathematica to perform the gaussian integral and obtain

=
√

1
2π β 1

t2−t1

√
1
2π β 1

t1−t0

√
2π 1

β
(t2−t1)(t1−t2)

t2−t0
exp

{
− 1

2β
[

(x2−x0)
2

t2−t0

]}
=

√
1
ihD(t2 − t0) e

i
� S(x2, t2; x1, t1)

after obvious simplifications and a notational adjustment.51 The integral that
led to this result can be regarded as a path integral over the simple class of
paths shown above—a path integral to which the only classical path (shown in
red) makes a net contribution. We observe in this connection that

∂
∂x1

{
m
2

[
(x2−x1)

2

t2−t1
+ (x1−x0)

2

t1−t0

]}
= 0 ⇒ x1 = x0 + x2−x0

t2−t0
(t1 − t0)

51 Seen in this light, the composition rule (80) expresses a wonderful property
of Gaussians, and an even more wonderful property of propagators in general
. . . though when extracted from

K(x1, t1; x0, t0) =
∑

n

e−
i
�

En(t1−t0)ψn(x1)ψ∗
n(x0)

it follows almost trivially from the orthonormality of the eigenfunctions and an
elementary property of the exponential function.
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In short (and consistently with Hamilton’s principle), S-minimization places x1

right on the classical path xc(t) that links
{
x2, t2

}
←

{
x0, t0

}
: x1 = xc(t1).

And we verify by quick calculation that

m
2

[
(x2−x1)

2

t2−t1 + (x1−x0)
2

t1−t0

]
= m

2

[
(x2−x0)

2

t2−t0

]
at x1 = xc(t1)

Notice that S-extremization can be rendered as a “smooth splice condition”

∂
∂x1

S(x1, t1;x0, t0) = − ∂
∂x1

S(x2, t2;x1, t1)

�
final momentum of first leg = initial momentum of second leg

which is intuitively quite satisfying.

Look on the basis of this experience to

lim
�↓0

∫ √
( 1
ih )nD(2, 1)

√
( 1
ih )nD(1, 0) e

i
�

{
S(2, 1) + S(1, 0)

}
dxxx1

where we elect to work now in n dimensions, and adopt the abbreviations
S(1, 0) ≡ S(xxx1, t1;xxx0, t0), etc. The n -dimensional method of stationary phase52

supplies

lim
λ↑∞

∫
f(xxx) eiλg(xxx)dx1 · · · dxn ∼ f(xxx) eiλg(xxx)

√
( 2πi

λ )n 1
det G(xxx) (82)

where ∇∇∇g(xxx) vanishes at xxx = xxx, and G(xxx) ≡ ‖∂2g(xxx)/∂xi∂xj‖. So we have

lim
�↓0

∫ {
etc.

}
dxxx1 ∼ ( 1

ih )n
√

D(2, 1)D(1, 0) e
i
�

{
S(2, 1) + S(1, 0)

}√
(ih)n

det S

which—because Hamilton’s principle serves to place xxx1 on the classical path
that links xxx0 to xxx2, and thus to achieve S(2, 1) + S(1, 0) = S(2, 0) —becomes

= ( 1
ih )

n
2

√
D(2,1)D(1,0)

det S
e

i
�S(2, 0)

I will show in a moment that D(2, 1)D(1, 0) = D(2, 0) · det S , giving finally

=
√

( 1
ih )nD(2, 0) e

i
�S(2, 0) (82)

We are brought thus to the quite general conclusion that, though Pauli’s WKB
approximation to the propagator fails except in special cases to satisfy the
composition law (80), it invariably does so in the classical limit � ↓ 0.

52 The one-dimensional formula—encountered most recently at (43), and
sometimes attributed to Lord Kelvin ()—generalizes straightforwardly with
the aid of the n -dimensional Gaussian integral formula (71); i.e., by rotating
to the coordinate system that renders G diagonal.
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I turn now, as promised, to the proof of

D(2, 1)D(1, 0) = D(2, 0) · det S (83)

which, though it has been seen to lie close to the heart of the mechanism by
which classical paths come to make the predominant contributions to Feynman’s
path integrals, is itself a proposition that lives (obscurely!) within classical
mechanics. The argument hinges on the fact that since xxx sits on the dynamical
curve that links

{
xxx2, t2

}
←

{
xxx0, t0

}
it must be a function of the endpoints that

serve to define that curve:

xp1 = xp1(t1;xxx2, t2, xxx0, t0)

Therefore

∂2

∂xp2∂x
q
0

S(2, 0) = ∂2

∂xp2∂x
q
0

{
S(2, 1) + S(1, 0)

}

=
∂

∂xp2

{∂xr1
∂xq0

∂

∂xr1

{
S(2, 1) + S(1, 0)

}
︸ ︷︷ ︸

+
∂S(1, 0)
∂xq0

}
(�)

0

=
∂xr1
∂xp2
· ∂

2S(1, 0)
∂xr1∂x

q
0

on one hand (84.1)

and, by a similar argument,

=
∂2S(2, 1)
∂xp2∂x

r
1

· ∂x
r
1

∂xq0
on the other (84.2)

But if we work out the right side of (�)—including the abandoned term—we
obtain

=
∂2S(2, 1)
∂xp2∂x

r
1

· ∂x
r
1

∂xq0
+

∂xr1
∂xp2
· ∂

2S(1, 0)
∂xr1∂x

q
0

+
{∂2S(2, 1)

∂xr1∂x
s
1

+
∂2S(1, 0)
∂xr1∂x

s
1

}∂xr1
∂xp2

∂xs1
∂xq0

+
∂2xr1

∂xp2∂x
q
0

· ∂
∂xr1

{
S(2, 1) + S(1, 0)

}
︸ ︷︷ ︸

0

The first two terms on the right are individually equal to the expression on the
left, so we have

= −
{∂2S(2, 1)

∂xr1∂x
s
1

+
∂2S(1, 0)
∂xr1∂x

s
1

}
· ∂x

r
1

∂xp2

∂xs1
∂xq0

(84.3)

In (84) we have three different descriptions of the same thing. Recalling from
(25) the definition of the Van Vleck determinant (note particularly the presence
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of the (−)n factor) we obtain

D(2, 0) = D(2, 1)· |∂xxx1
∂xxx0
| = D(1, 0)· |∂xxx1

∂xxx2
| = det S · |∂xxx1

∂xxx2
||∂xxx1
∂xxx0
|

whence

D(2, 0) =
D(2, 1)D(1, 0)

det S

which is the result we sought to establish.53

Multiple classical paths: the particle-on-a-ring problem. Let a particle m be
confined to the (let us say convex) interior of a domain bounded by a reflective
barrier. Such a particle can proceed from point xxx0 to point xxx by a direct path,
but can do so also by any number of indirect or reflective paths—paths that
visit the barrier one or more times. Typically it is not possible to ennumerate
the paths in any useful way,54 but in favorable cases—i.e., within domains
of sufficiently regular design—it is possible to effect such an ennumeration: in
such cases the Feynman formalism gives rise to a powerful “quantum mechanical
method of images,” the most characteristic rudiments of which I undertake now
to describe.

A simple example is provided by the “particle-in-a-box problem” (what
Einstein, in a dispute with Born, called the “ball-between-walls problem”). A
particle is confined to the interval 0 � x � a. It can proceed directly from x0

to x, but will arrive there also if it heads off toward any of the reflective images
of x. If it heads toward 2na + x (n = 0,±1,±2, . . .) it will arrive at x after an
even number of bounces, while if it heads toward 2na− x is will arrive after an
odd number of bounces. The action functional S[path] has acquired multiple
local extrema, with which the various dynamical paths are associated: at x the
familiar 2-point action function has become multi-valued

S(x, t;x0, t0) =
m

2
(x− x0)2

t− t0
−→ S(±)

n (x, t;x0, t0) =
m

2
(2na± x− x0)2

t− t0

and the Hamilton-Jacobi equation 1
2mS2

x + St = 0 is satisfied on each of its
branches. Pauli was apparently the first to apply path integral methods to the
particle-in-a-box problem,55 though in  Richard Crandall and I thought
we were.

53 The preceding argument was taken from transformational physics &
physical geometry (–): “Semi-classical quantum theory,” page 77,
which was itself taken from some research notes written prior to .

54 A classic example is provided by the so-called “stadium problem,” wherein
a particle is allowed to bounce around inside a 2-dimensional “stadium” of
roughly elliptical shape. Most trajectories are aperiodic, and trajectories that
begin at xxx0 with slightly different velocities soon become wildly divergent. The
model has become a favorite laboratory for studying classical/quantum chaos.

55 See pages 170–172 in the / lecture notes.6 Pauli’s objective was
to demonstrate the accuracy of his technique for managing potentials (in this
case, infinite wall potentials), but considered the example “interesting in its
own right.”
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Even simpler than the one-dimensional particle-in-a-box problem is the
“particle-on-a-ring problem,” discussed below.

A mass m moves freely on a ring—more generally: on a not-necessarily-
circular loop—of circumference a. It encounters no obstacle, experiences no
bouncing, becomes periodic and exhibits path multiplicity not because of the
boundedness of the domain on which it moves, but because of its topology:
the points x and x + na (n = 0,±1,±2, . . .) are physically identical. Quantum
mechanically one has

− �
2

2mψxx = Eψ

and requires ψ to be periodic: ψ(x + a) = ψ(x).56 Normalized solutions
are ψ(x) = exp

{
i
�
px

}
with p =

√
2mE, and the periodicity condition enforces

pa = 2πn�. So we have

ψn(x) = 1√
ae

i
�
pnx with pn ≡ nh/a

whence En = En2 where E ≡ h2/2ma2.57 Notice that the ground state has
become flat

ψ0(x) = 1√
a with E0 = 0

and that the excited states are 2-fold degenerate:

E−n = En : n = 1, 2, 3, . . .

In those respects the ring problem differs markedly from the box problem.
The spectral representation of the propagator becomes

K(x, t; y, 0) =
+∞∑
−∞

e
− i

�En2t 1
ae

i
�pn(x− y)

= 1
a

{
1 + 2

∞∑
n=1

e
− i

�En2t cos
[
2nπx− y

a

]}
(85)

As it happens, a name and elegant theory attaches to series of that design: the
theta function ϑ3(z, τ)—an invention of the youthful Jacobi—is defined

ϑ3(z, τ) ≡ 1 + 2
∞∑
n=1

qn
2
cos 2nz with q ≡ eiπτ

=
+∞∑
−∞

ei(πτn
2−2nz)

56 In the particle-in-a-box problem one, on the other hand, requires

ψ(0) = ψ(a) = 0

57 Angular momentum, by the way, is conserved only if the constraining loop
is circular , and is given then by (a/2π)pn = n�.
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y x

t

a

Figure 7: On a loop of circumference a, with x taken to mean arc
length, the points x and x + na are physically identical. There are
therefore an infinite number of distinct dynamical paths linking any
specified pair of endpoints. The figure appears also as Figure 2 in
“Applied theta functions of one or several variables” ().

and its wonderful properties fill books, most accessibly Richard Bellman’s
A Brief Introduction to Theta Functions (). In this notation (85) reads

K(x, t; y, 0) = 1
aϑ3(z, τ) (86)

with
z = π x−y

a and τ = − Et
π�

= − 2π�t
ma2

On the other hand, Feynman’s path integral method—interpreted in this
instance (since the particle moves freely) to mean not summation over all
conceivable paths but summation over all classical paths (free motion directed
from y to all the images of x, as displayed in the figure)—immediately supplies

K(x, t; y, 0) =
√

m
iht

+∞∑
−∞

exp
{

im
�2t (x + na− y)2

}

=
√

m
iht exp

{
i
�

m
2t (x− y)2

}
·
+∞∑
−∞

ei(πτn
2−2nz)

= ditto ·ϑ3(z, τ)

= 1
a
√

τ/i ei z
2/πτϑ3(z, τ) (87)
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with
τ = ma2

2π�t = − 1
τ and z = −ma

2�t (x− y) = z
τ

The expressions on the right sides of (86) and (87) do not much resemble
each other. But the theory of theta functions supplies a zillion wonderful
identities58 . . . among them this one

ϑ3(z, τ) =
√

i/τ ez
2/πiτϑ3( zτ ,− 1

τ ) (88)

which is called the “Jacobi theta transformation” (or “Jacobi’s identity,” when
confusion with other wonders of that name is unlikely), concerning which
Bellman remarks that

“. . . it has amazing ramifications in the fields of algebra, number
theory, geometry and other parts of mathematics. In fact, it is not
easy to find another identity of comparable significance.”

In the present application (to the free-particle-on-a-ring problem)

Jacobi’s identity asserts the identity of the spectral representation
(86) and the path integral representation (87)—of what Born calls
the “wave representation” and the “particle representation”—of the
propagator.

Note the sense in which τ lives upstairs on the left side, but downstairs on
the right side of (88) . . .with consequences that can be quite dramatic. It is,
for example, an implication of (88) that (set τ = it/π and z = 0)

f(t) ≡
+∞∑
−∞

e−tn
2

=
√

π
t

+∞∑
−∞

eπ
2n2/t

While the left and right sides of the preceding equation are identically equal,
they are not computationally identical! For suppose we wanted to evaluate
f(.01): working from the sum on the left, it follows from

e−25 ≈ 10−10.8

that we would (since n2/100 = 25 entails n = 50) have to keep about 50 terms
to achieve 10-place accuracy. Working, on the other hand, from the sum on the
right, we have

f(.01) =
√

100π(1 + 2 e−100π2︸ ︷︷ ︸ + · · ·)

≈ 10−434

58 See, for example, Chapter 21 in E. T. Whittaker & G. N. Watson, Modern
Analysis (4th edition, ), especially §21.51. The proof of (88) elegantly
simple: see §4 in “2-dimensional ‘particle-in-a-box’ problems in quantum
mechanics” (), where I sketch also a theory of theta functions of several
variables and the corresponding generalization of (88).
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and have achieved accuracy to better than 400 places with only two terms!
The situatiuon would be reversed if we were to evaluate f(100). Physically,
t enters upstairs (through terms of the form exp

{
− i

�
Ent

}
) into the design

of the spectral representation of the propagator, but downstairs (through the
Van Vleck determinant and terms of the form exp

{
i
�
(x−y)2/t

}
) into the design

of the path integral representation. We might therefore
• expect the part integral representation to be more useful when t is small;
• expect the spectral representation to be more useful when t is large

but the presence of the i’s clouds the issue, since e−ωt and eiωt have entirely
different asymptotic properties.

The essentials of the preceding discussion are by no means special to the
ring problem. For the oscillator one has

Kspectral =
∞∑
0

e−iω(n+ 1
2 ) tψn(x)ψn(y)

ψn(x) =
(
2mω
h

)1
4 1√

2nn!
e−

1
2 (mω/�)x2

Hn(
√

mω
�
x)

Kpath integral =
√

mω
ih sinωt exp

{
i
�

mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]}

and the equivalence follows59 from an obscure but pretty identity known as
“Mehler’s formula:”

∞∑
n=0

1
n!

(
1
2τ

)n
Hn(x)Hn(y) = 1√

1−τ2 exp
{

2xyτ − (x2 + y2)τ2

1− τ2

}

To the extent that Feynman has succeeded in constructing an alternative
to the standard formulation of quantum mechanics—to the extent, that is to
say, that we are presented with alternative but equivalent formulations of the
propagator

Kspectral , with t upstairs ⇐⇒ Kpath integral , with t downstairs

—to that extent we expect there to exist a “super identity” that serves to link
one formulation with the other, a super identity of which Jacobi’s and Mehler’s
identities are particular instances. And, though here motivated by physics,
we expect the super identity to issue from pure mathematics, from (it would
appear) the theory of partial differential equations.

59 For the details, see “Jacobi’s theta transformation & Mehler’s formula:
their interrelation, and their role in the quantum theory of angular momentum”
(). F. G. Mehler (–) published his result in —sixty years
before it acquired quantum mechanical work to do. In quantum mechanics
() I describe how Mehler’s formula can be used to prove the completeness
of the oscillator eigenfunctions (see Chapter 2, pages 64–65)—something that,
David Griffiths has remarked, is more often talked about (assumed) than done.
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The methods described here as they relate to the ring problem were—as
already remarked—applied to the one-dimensional particle-in-a-box problem
by Pauli and by Born & Ludwig60 in the early ’s, and by me to a number
of exceptionally tractable two-dimensional particle-in-a-box problems in the
early ’s.61 Suppose, for example, that a particle moves freely within the
triangular box shown below:

a

h

x

x

Figure 8: An otherwise free particle is confined to the interior of
an equilateral triangular box. The problem is to solve

− �
2

2m∇
2ψ = Eψ

subject to the conditions ψ(∂�) = 0 and
∫∫

� |ψ(x1, x2)|2 dx1dx2 = 1.

Working from Figure 9, one is able to
• ennumerate,
• assign a classical action to, and
• sum over

the image paths to construct an exact description of Kpath(xxx, t;yyy, 0). One can
then use a 2-dimensional generalization of Jacobi’s identity to construct

Kspectral(xxx, t;yyy, 0) =
∑
nnn

e−
i
�
E(nnn)tψnnn(xxx)ψ∗nnn(yyy)

from which the eigenvalues and eigenfunctions can then be read off. The energy

60 M. Born & W. Ludwig, “Zur quantenmechanik des kräftfreien Teilchens,”
Z. Physik 150, 106 (1958).

61 That old work has been revisited and expanded in two lengthy recent
essays:“2-dimensional ‘particle-in-a-box’ problems in quantum mechanics.
Part I: Propagator & eigenfunctions by the method of images” () and
“Applied theta functions of one or several variables” ().
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T

T









x
x

x
x

x

x

Figure 9: Identification of the six elements that are taken to
comprise the “fundamental unit,” names assigned to the associated
“fundamental images” of the physical target point xxx ≡ xxx0, and
the (non-orthogonal) translation vectors TTT 1 and TTT 2 that serve to
replicate the fundamental unit. White cells are even (in the sense
that they give rise to paths with an even number of reflection points),
and shaded cells are odd.

eigenvalues out to be describable

En̂nn = Ê(n̂2
1 + 3n̂2

2) with Ê ≡ 1
18

h2

ma2

where n̂1 and n̂2 are integers (either both even or both odd) drawn from the
shaded sector in Figure 10. The associated eigenfunction is

ψn̂nn(xxx) =
√

8
6area

{
Gn̂nn(xxx) + iFn̂nn(xxx)

}
where

Gn̂nn(ξ1, ξ2) = cos[2n̂1ξ1] sin[2n̂2ξ2] + cos[2−n̂1+3n̂2
2 ξ1] sin[2−n̂1−n̂2

2 ξ2]

+ cos[2−n̂1−3n̂2
2 ξ1] sin[2+n̂1−n̂2

2 ξ2]

F n̂nn(ξ1, ξ2) = sin[2n̂1ξ1] sin[2n̂2ξ2] + sin[2−n̂1+3n̂2
2 ξ1] sin[2−n̂1−n̂2

2 ξ2]

+ sin[2−n̂1−3n̂2
2 ξ1] sin[2+n̂1−n̂2

2 ξ2]
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Figure 10: The integers that label states in the equilateral box
problem are drawn from the shaded sector of the equi-parity lattice.
The significance of the polyhedral trace is explained in the essay61

from which the figure was taken.

with ξ1 ≡ π
3ax1 and ξ2 ≡ π

3a

√
3x2.

The interesting point is that while the eigenfunctions reported above
demonstrably do satisfy the Schrödinger equation, they appear in this instance
to be obtainable only by the method just described; i.e., by

∑
paths, for

the eigenfunctions are not of a form which could be achieved by separation of
variables.

Management of operators within the Feynman formalism. Fundamental to the
formal apparatus of quantum mechanics are self-adjoint operators A , B , . . .
(representative of “observables”) and the algebraic relations among them (for
example: [x , p ] = i� I). In his “space-time approach to quantum mechanics”
Feynman assigns a preferred role to the position operator(s) x . Our assignment
is to describe the placement of operators-in-general within such a biased
formalism.

It is not by their naked selves but indirectly, through constructions of
the form (α|A |β), that operators engage the world of physical experience.
Occupying a special place within that population of complex numbers are
the real numbers (ψ|A |ψ) that we call “expectation values.” To describe the
dynamical time-dependence of such numbers we write

(α|A |β) −→ (α|U –1(t)A U(t)|β) with U –1(t) = U+(t)

which in the Schrödinger picture we attribute to motion of state vectors

|β)0 −→ |β)t = U(t)|β)0 while A just sits there
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Feynman, however, finds (though he nowhere says so in plain words) that
his formal needs are best served by the conceptual and notational resources
provided by the Heisenberg picture, where

A(0) −→ A(t) = U –1(t)A(0)U(t) while |β) sits there

Moving operators drag their eigenbases with them: suppose A |a) = a|a),
which in the more explicit notation that has been forced upon us reads

A(0)|a, 0) = a|a, 0)

This can be written U(t)A(t)U –1|a, 0) = a|a, 0), which on multiplication by
U –1(t) becomes

A(t)|a, t) = a|a, t) with |a, t) = U –1(t)|a, 0)

The motion of the dragged eigenbasis is retrograde. Particularize A �→ x , writing

x(t)|x, t) = x|x, t)
|x, t) = U –1(t)|x, 0) and (x, t| = (x, 0|U(t)

In that notation the equation K(x, t; y, 0) ≡ (x|U(t)|y) that heretofore has
served to define the propagator becomes

K(x, t; y, 0) = (x, t|y, 0)

It is a familar proposition, fundamental to the quantum theory, that

(a|ψ) =
{

probability amplitude that an A -measurement, performed
on a system in state |ψ), will return the result “a”

If we wait a time t this complex number will have changed, from (a, 0|ψ) to
(a, t|ψ). Feynman is motivated to introduce some process-oriented terminology:

(a, t|ψ) =
{

“transition amplitude” that the system will go
in time t from state |ψ) to state |a)

= (a|U(t)|ψ)

=
∫∫

(a|x)dx (x, t|y, 0)︸ ︷︷ ︸ dy(y|ψ)

propagator

The “process-oriented” bias built into Feynman’s preferred language becomes
plain with the realization that one could equally well say

=
{

probability amplitude that an A -measurement, performed
on the evolved system, will return the result “a”

or (in the Schrödinger picture)

= weight of |a)-component acquired by |ψ)t

To describe the moving expectation value 〈A〉t = (ψ|A(t)|ψ) Feynman
makes devious use of the “mixed representation trick”: he picks a pair of times
t1 and t0 that straddle t and writes

〈A〉t =
∫∫

(ψ|x, t1) dx(x, t1|A(t)|y, t0) dy(y, t0|ψ) : t1 > t > t0
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and, more generally,

(α|A(t)|β) =
∫∫

(α|x, t1) dx(x, t1|A(t)|y, t0) dy(y, t0|β) : t1 > t > t0

Insert

(x, t1|A(t)|y, t0) =
∫∫

(x, t1|x, t) dx(x, t|A(t)|y, t) dy (y, t|y, t0)

and obtain

(α|A(t)|β) (89)

=
∫∫∫∫

(α|x, t1) dx(x, t1|x, t) dx(x, t|︸ ︷︷ ︸ A(t) |y, t) dy (y, t|y, t0) dy(y, t0|β)︸ ︷︷ ︸
state that evolves to (α| as t1← t state that evolves from |β) as t← t0

This construction provides the platform upon which Feynman proceeds to
build (and provides evidence of how literally/seriously understood his objective,
which was to devise a “space-time formulation of . . . quantum mechanics”).

Specialize: A(t) �−→ F(t) ≡ F (x(t)). Use

(x, t|F (x(t))|y, t) = F (x) δ(x− y)

in (89) to obtain the matrix element

(α|F (x(t))|β) (90)

=
∫∫

(α|x, t1) dx
{ ∫

(x, t1|x, t)F (x)dx(x, t|y, t0)
}
dy(y, t0|β)

which Feynman calls the “transition element” between the daughter of |β) and
the mother of (α|. In orthodox notation the meaning of the transition element
is not at all obscure:

=
∫

α∗(x, t)F (x)β(x, t) dx

But by placing “breathing room” on both sides of t Feynman has introduced an
expression

{∫
etc.

}
to which he is able to assign a very interesting interpretation

(see the following figure):{ ∫
(etc.) dx

}
=

∫ { ∫
x← x

e
i
�S[path]D[paths]

}
F (x)

{ ∫
x← y

e
i
�S[path]D[paths]

}
dx

=
∫
x← y

F [path]e
i
�S[path]D[paths] (91)

F [path]
{

looks at the path x(u) : t0 < u < t1
and announces F (x(t))

where a normalization factor has been absorbed into the meaning of D[paths].
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F( )x∫

x

t

t

t

x x

xd

Figure 11: Diagramatic interpretation of (90) that gives rise to
the functional integral (91).

Equation (91) captures the bracketed essence of (90); it renders what
Feynman calls the “transition element” (x|U(t1, t)F(t)U(t, t0)|y)—abbreviated
〈F〉S —as a “functional integral”62

〈F〉S =
∫
x← y

F [path]e
i
�S[path]D[paths] (92)

and gives back Feynman’s fundamental postulate/insight in the case F(t) = I .

The more general construction (x|U(t1, t′′)F(t′′)U(t′′, t′)G(t′)U(t′, t0)|y)
makes quantum mechanical good sense only if t1 � t′′ � t′ � t0. Define the

“chronological product” P
{

F(t′′)G(t′)
}
≡

{
F(t′′)G(t′) if t′′ > t′

G(t′)F(t′′) if t′′ < t′

The argument that gave (91) then gives

〈P
{

F G
}
〉S =

∫
x← y

F [path]e
i
�S[path]D[paths]

where now F [path] looks at the path x(u) and announces F (x(t′′))G(x(t′)).
This demonstrates the rebustness of the functional integral concept, but. . .

Why should we have interest in chronological products? Motivation comes
from the simplest aspects of the theory of coupled differential equations. Look
to

d
dtxxx = Mxxx with xxx0 ≡ xxx(0) specified

62 See Chapter 7 of Feynman & Hibbs.
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or—which is the same—to

xxx(t) = xxx0 +
∫ t

0

Mxxx(u) du

The immediate solution is
xxx(t) = eM txxx0

which, however, fails if M is allowed to be itself variable. The system

xxx(t) = xxx0 +
∫ t

0

M(u)xxx(u) du

can, however, be solved by iteration: one is led to

xxx(t) =
{

I +
∫ t

0

M(u) du +
∫ t

0

∫ u

0

M(u)M(v)︸ ︷︷ ︸ dudv + · · ·
}
xxx0

NOTE the spontaneous time-ordering

which by a little trickery becomes

=
{

I +
∫ t

0

M(u) du + 1
2!

∫ t

0

∫ t

0︸ ︷︷ ︸ P
{
M(u)M(v)

}
dudv + · · ·

}
xxx0

NOTE the identical upper limits

≡ P

{
exp

∫ t

0

M(u) du
}
xxx0

and gives back eM txxx0 when M(u) is constant. We are, on the basis of these
remarks, not surprised to discover that the chronological product is a tool that
sees heavy service in time-dependent perturbation theory

i� ∂
∂t |ψ) =

{
H0 + λV(t)

}
|ψ)

And that, in fact, is the application which ostensibly motivates the discussion
in Chapter 7 of Feynman & Hibbs.

But Feynman’s interest in time-ordered operators is motivated also by a
second, more fundamental consideration: he finds it natural to read the operator
product AB as “first B then A ;” i.e., as symbolic of measurements performed
in temporal sequence, however brisk. I turn now to discussion of how that idea
is implemented in illustrative cases.

We look first to x p − px = i� I , which in most formulations of quantum
mechanics is postulated, but in Feynman’s formulation has the status of a
deduced consequence of postulates invested elsewhere. The statement

x p − px = i� I ⇐⇒ F (x)p − pF (x) = i�F ′(x)

if F (x) is sufficiently nice (developable as a power series). In the Heisenberg
picture we therefore have

F (x(t))p(t)− p(t)F (x(t)) = i�F ′(x(t)) (93)
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and it is actually this statement that Feynman undertakes to reproduce. To
that end he examines

〈∂F ( x )
∂ x

〉
S
≡

∫
(x1, t1|x, t)∂F (x)

∂x (x, t|x0, t0) dx

Integration by parts gives

〈∂F ( x )
∂ x

〉
S

= (boundary term)−
∫

F (x) ∂∂x
{
(x1, t1|x, t)(x, t|x0, t0)

}
dx

Discard the boundary term on grounds that it can make no contribution to∫∫
α(x1, t1) dx1(boundary term) dx0β(x0, t0) if the states |α) and |β) satisfy

typical boundary conditions. Then

= −
∫

∂
∂x (x1, t1|x, t) · F (x)(x, t|x0, t0) dx

−
∫

(x1, t1|x, t)F (x) · ∂∂x (x, t|x0, t0) dx

Write

∂
∂x (x, t|x0, t0) =

∫
∂
∂x (x, t|y, t− τ)︸ ︷︷ ︸ dy(y, t− τ |x0, t0)

= 1
A(τ) exp

{
i
�

[
m
2τ (x− y)2 − τV (x)

]}

= i
�

∫ {
m
τ (x− y)− τV ′(x)

}
(x, t|y, t− τ) dy(y, t− τ |x0, t0)

= i
�

{
m
τ x− τV ′(x)

}
(x, t|x0, t0)

− i
�

∫
(x, t|y, t− τ)

{
m
τ y

}
dy(y, t− τ |x0, t0)

∂
∂x (x1, t1|x, t) =

∫
(x1, t1|y, t + τ) dy ∂

∂x (y, t + τ |x, t)︸ ︷︷ ︸
1

A(τ) exp
{
i
�

[
m
2τ (y − x)2 − τV (y)

]}

= − i
�

∫ {
m
τ (y − x)

}
(x1, t1|y, t + τ) dy(y, t + τ |x, t)

= + i
�
(x1, t1|x, t)

{
m
τ x

}

− i
�

∫
(x1, t1|y, t + τ)

{
m
τ y

}
dy(y, t + τ |x, t)

and note the use made here of Feynman’s fundamental postulate (also that it
has entered in a system-specific way: L = 1

2mẋ2 − V (x)). We now have
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i�
〈∂F ( x )

∂ x

〉
S

= −
∫∫

(x1, t1|y, t + τ)
{
m
τ y

}
dy(y, t + τ |x, t)F (x) dx(x, t|x0, t0)

+
∫

(x1, t1|x, t)
{
m
τ x

}
F (x) dx(x, t|x0, t0)

+
∫

(x1, t1|x, t)F (x)
{
m
τ x

}
dx(x, t|x0, t0)

−
∫∫

(x1, t1|x, t)F (x) dx(x, t|y, t− τ)
{
m
τ y

}
dy(y, t− τ |x0, t0)

−
∫

(x1, t1|x, t)
{
τV ′(x)

}
F (x) dx(x, t|x0, t0)

= −(x1, t1|m
x(t + τ)− x(t)

τ
·F (x(t))− F (x(t))·m x(t)− x(t− τ)

τ︸ ︷︷ ︸
NOTE the chronological order

+ τV ′(x(t))F (x(t))|x0, t0) (94)

Which brings us to a characteristic feature of the “space-time formulation
of . . . quantum mechanics:” Feynman considers momentum to be a derived
concept, and its meaning to be system-dependent:63

p(t) ≡ lim
τ↓0

m
x(t + τ)− x(t)

τ

By this interpretation (94) becomes, as τ ↓ 0,

i�
〈∂F ( x )

∂ x

〉
S

= (x1, t1|
{
F (x)p − pF (x)

}
|x0, t0)

=
〈{

F (x)p − pF (x)
}〉

S

which, since valid for all endstates, entails

F (x)p − pF (x) = i�F ′(x)

and in the case F (x) = x becomes (if we restore the notationally surpressed t)

x(t)p(t)− p(t)x(t) = i� I (95)

The argument shows clearly the mechanism by which operator order arises as
an expression of temporal order .

Back up to (94) and set F (x) = 1. Divide by τ and obtain

0 = −(x1, t1|m
x(t + τ)−x(t)

τ
− x(t)−x(t− τ)

τ

τ
+ V ′(x(t))|x0, t0)

63 As, indeed, so also does Lagrange: p ≡ ∂L/∂ẋ.
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which in the limit τ ↓ 0 becomes

ẍ(t) = −V ′(x(t)) (96)

This is, in Feynman’s phrase, “the matrix expression of Newton’s law.” Since
(96), when spelled out, means

(α| ẍ(t)|β) = (α| − V ′(x(t))|β) : all |α) and β)

it might better be called “Ehrenfest’s theorem in the Heisenberg picture.”

We have recently been discussing properties of path functionals of a form
first encountered at (92)

〈F 〉S =
∫

F [path] e
i
�S[path]D[paths]

where it is now understood that the paths in question link (x1, t1) ← (x0, t0).
We consider such objects now from a somewhat more general point of view
(and will formally disregard the fact that the functionals F [path] encountered
in preceding arguments were of specialized design). Clearly the set of paths is
invariant under

path −→ path + εη(t) : η(t0) = η(t1) = 0

Therefore

〈F 〉S =
∫

F [path + εη(t)] e
i
�S[path+εη(t)]D[paths]

which, when the concept of “functional derivative” is brought into play,64

becomes

=
∫ {

F [path] + ε

∫
δF [path]
δη(t)

η(t) dt + · · ·
}

· e
i
�

{
S[path]+ ε

∫
δS [path]

δη(t)
η(t) dt+···

}
D[paths]

= 〈F 〉S + ε

∫ {∫ [
δF [path]
δη(t)

+ i
�
F [path]

δS [path]
δη(t)

]

· e i
�S[path]D[paths]

}
η(t) dt + · · ·

and this, since valid for all tickle functions η(t), entails
∫ {δF [path]

δη(t)
+ i

�
F [path]

δS [path]
δη(t)

}
e

i
�S[path]D[paths] = 0

64 For a fairly detailed introduction to this subject, see Chapter 5: “Calculus
of Functionals” in classical field theory ().
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which can be written〈
δF [path]
δη(t)

〉
S

= − i
�

〈
F [path]

δS [path]
δη(t)

〉
S

(97)

Classical mechanics supplies

S[path + εη(t)] = S[path] + ε

∫ {
∂L

∂x(t)
− d

dt
∂L

∂ẋ(t)

}
η(t) dt + · · ·

so we have 〈
δF [path]
δη(t)

〉
S

= − i
�

〈
F [path]

{
∂L

∂x(t)
− d

dt
∂L

∂ẋ(t)

}〉
S

In the case F [path] ≡ 1 we obtain〈
∂L

∂x(t)
− d

dt
∂L

∂ẋ(t)

〉
S

= 0 (98)

which is a pretty variant of (96).

Noether’s theorem, as it is encountered in classical mechanics, describes
the first-order response δωS[path] of the classical action to parameterized maps
of various kinds (rotations, space and time translations, gauge transformations,
etc.) and the conservation laws that result when in fact those maps describe
symmetries of the action: δωS[path] = 0. Feynman has placed us in position to
translate that theory directly into quantum mechanics.65

Feynman and Hibbs, writing in , remark (at page 173) that “Julian
Schwinger has been investigating the formulation of quantum mechanics
suggested by” (98). They refer to an elaborate theoretical ediface which I survey
elsewhere in these notes, and which had, in fact, been essentially complete since
the early ’s.66

Diffractive failure of the method of images. Exact descriptions of the propagator
are available in only a relatively few “textbook” cases. It is a remarkable fact
that in the cases considered thus far K(x1, t1;x0, t0), when rendered in the
form suggested by the Feynman formalism, was found to involve summation
not over “all conceivable paths,” as the formalism contemplates, but only over
the classical path or paths (x1, t1)← (x0, t0): in those cases∑

“all” paths

“collapses” to
∑

classical paths

65 See quantum mechanics (), Chapter 3 page 95 for details. The
present discussion has drawn heavily on material presented there.

66 See Julian Schwinger, “The theory of quantized fields. I,” Phys Rev. 82,
914 (1951) and “The theory of quantized fields. II,” Phys Rev. 91, 913 (1953)—
both of which are reproduced in the Schwinger Collection3—and related papers
reprinted in Schwinger’s Quantum Kinematics & Dynamics ().
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Early students of the Feynman formalism were led by such experience to inquire
whether “collapse” might be a general/universal phenomenon. The following
discussion, based on a paper by Richard Crandall,67 will demonstrate that
collapse—far from being the rule—is the rare exception.

Let a mass m be confined by reflecting barriers to the interior of an
open sector or “wedge” with vertex angle α. We look first to the ordinary
quantum mechanics of such a system: we solve the time-independent Schödinger
equation, and use the information thus gained to assemble Kspectral. This we
then compare to the Kpaths supplied by the method of images.

The Schrödinger equation reads

∇2ψ + 2mE
�2 ψ = 0

∇2 = 1
r

∂
∂r r

∂
∂r + 1

r2
∂2

∂θ2 in polar coordinates:
{
x = r cos θ
y = r sin θ

and upon separation ψ = R(r)·Y (θ) becomes

{
d2

dr2 + 1
r

d
dr + 2mE

�2 − µ2

r2

}
R(r) = 0 (99.1)

d2

dθ2Y (θ) = −µ2Y (θ) (99.2)

where the separation constant is called −µ2 in order to emphasize that, in view
of the boundary conditions Y (0) = Y (α) = 0, we have interest only in the
oscillatory solutions of (99.2). Immediately

Y (θ) = (constant) · sinµθ
µ = nπα : n = 0, 1, 2, . . . (100)

Return with this information to (99.1). Multiply by r2 and obtain

{
ρ2 d2

dρ2 + ρ d
dρ + ρ2 − µ2

}
R(ρ) = 0 with

{
ρ ≡ r

√
2mE/�2

R(ρ) ≡ R(ρ/
√

2mE/�2)

This is Bessel’s equation, of which the interesting solutions68 are R(ρ) = Jµ(ρ).

67 “Exact propagator for motion confined to a sector,” J. Phys. A: Math.
Gen. 16, 513 (1982). During the late ’s and early ’s Richard (then a
graduate student at MIT) and I cultivated (as best we could in those snail-mail
days) a mutual interest in the Feynman formalism. During the late ’s and
early ’s, after Richard had joined the Reed College faculty, we were able to
resume that collaboration . . .working in adjoining offices, in the dead of night.
One such night the “wedge problem” entered into our conversation . . . sent us
to the men’s room lugging a mirror, which we held against the mirrors there to
gain a more vivid sense of how things would appear in a triangular barber shop.
The lesson of that adventure was quickly/brilliantly worked out by Richard, and
is reported in the paper cited above.

68 See J. Spanier & K. Oldham, Atlas of Functions (), page 523.
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So we have
R(r) = Jµ(r

√
2mE/�2)

where µ = n(π/α) is discrete but—for the free particle on the open wedge
as for the free particle on the unbounded plane—E assumes continuous values,
subject only to the constraint E � 0. We are led thus to “wedge eigenfunctions”
of the form

ΨE,µ(r, θ) = (constant) · Jµ(r
√

2mE/�2) sin(µθ) (101)

but must resolve several ticklish issues before we can make practical use of this
information:
ticklish point #1 The eigenfunctions (101) are not normalizable on the

wedge ∫ ∞

0

∫ α

0

|ΨE,µ(r, θ)|2 rdθdr is undefined

and therefore do not describe possible states of the system. They must be
looked upon as the raw material from which normalized states (wavepackets)
are assembled by superposition. This is not an uncommon situation. Were we
studying free motion on the line we would at this point have constructed

Ψp(x) = (constant) · e i
�

px : p = ±
√

2mE

which are neither normalizable nor orthogonal an any literal sense:
∫ +∞

−∞
Ψ∗

p(x)Ψq(x) dx is undefined for all p and q

We are, however, able to establish formal completeness . . .by trickery: we
construct ∫

e−λp2
Ψp(x)Ψ∗

p(y) dp = |constant|2
√
π/λ exp

{
− (x−y)2

4�2λ

}

The expression on the right becomes a normalized Gaussian if we set

|constant|2 = 1
2π�

That done, we have
↓
= δ(x− y) in the limit λ ↓ 0

giving

ψ(x) =
∫

δ(x− y)ψ(y) dy

=
∫ { ∫

Ψp(x)Ψ∗
p(y) dp

}
ψ(y) dy

=
∫

Ψp(x)
{ ∫

Ψ∗
p(y)ψ(y) dy

}
dp
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from which formal orthonormality follows as a corollary:∫
Ψ∗

q(x)ψ(x) dx =
∫ { ∫

Ψ∗
q(x)Ψp(x) dx

}
︸ ︷︷ ︸

{ ∫
Ψ∗

p(y)ψ(y) dy
}
dp

δ(p− q)

Notice that it is completeness—not orthonormality—that lies nearer the heart
of the matter. The wedge problem poses an identical formal difficulty, which
can be resolved by identical means:

Crandall snooped through (my copy) of what he calls “the Russians”69 and
extracted this identity:∫ ∞

0

e−λp
2
Jµ(ap)Jµ(bp) p dp = 1

2λ exp
{
− a2+b2

4λ

}
Iµ

(
ab
2λ

)

where the presumption is that 
[µ] > −1 and |arg p | < 1
4π, and Iµ(x) is the

modified (or hyperbolic) Bessel function of order µ.70 He on this basis obtains

Gµ ≡
∫ ∞

0

e−λEJµ(r
√

2mE/�2)Jµ(r0
√

2mE/�2) dE

= 1
m

∫ ∞

0

e−λp2/2mJµ(rp/�)Jµ(r0p/�) p dp

= 1
λ exp

{
− m

2λ�2 (r2 + r2
0)

}
Iµ

(
m

2λ�2 2rr0
)

We are informed that Iµ(x) ∼ 1√
2πx

ex as x→∞, so have

↓

= �√
2πmrr0λ

exp
{
− m

2λ�2 (r2 − r2
0)

}
as λ ↓ 0

It now follows (on the tentative assumption that the normalization constant is
the same for all eigenfunctions) that∫ ∞

0

e−λE

{ ∑
µ

ΨE,µ(r, θ)ΨE,µ(r0, θ0)
}
dE

∼ |constant|2 �√
2πmrr0λ

exp
{
− m

2λ�2 (r2 − r2
0)

}
·

∞∑
ν=0

sin(µθ) sin(µθ0)

69 I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals, Series & Products
(). The identity in question appears as item 6.615. G. N. Watson devotes
§13.31 in Treatise on the Theory of Bessel Functions () to discussion—
under the head “Weber’s second exponential integral”— of this identity, which
he attributes to H. Weber (). He reproduces a proof due to L. Gegenbauer
(), and remarks that the identity occurs in A. Sommerfeld’s dissertation:
“Mathematische theorie der diffraction,” Math. Ann. 47, 317 ().

70 See Spanier & Oldham,68 Chapter 50.
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which gives

↓

= �
2

m |constant|2 · 1
r δ(r − r0) ·

∞∑
µ=0

sin(µθ) sin(µθ0)

in the limit λ ↓ 0. Notice that the µ’s have detached themselves from the Bessel
factors, and reside now only in the angular factors . . .which Crandall subjects
to this clever analysis: We have

sin(µθ) sin(µθ0) = 1
2 cosµ(θ − θ0)− 1

2 cosµ(θ + θ0)

so
∞∑

µ=0

sin(µθ) sin(µθ0) = 1
4

∞∑
n=−∞

ein(π/α)(θ−θ0) − 1
4

∞∑
n=−∞

ein(π/α)(θ+θ0)

But the Poisson summation formula71 supplies
∞∑

n=−∞
ein(π/α)ϑ =

∞∑
n=−∞

∫ +∞

−∞
ei[(π/α)ϑ−2πn]y dy

=
∞∑

n=−∞
2πδ

(
π
α [ϑ− 2nα]

)

= 2α
∞∑

n=−∞
δ(ϑ− 2nα)

giving

sin(µθ) sin(µθ0) = 1
2α

∞∑
n=−∞

{
δ(θ − θ0 − 2nα)− δ(θ + θ0 − 2nα)

}
(102)

Integrals of the form ∫∫
wedge

f(r, θ) r drθ

see only a single one of those δ-spikes: namely δ(θ − θ0). Motivated by the
detailed results now in hand, we assign

|constant| =
√

2m
α�2

71 See page 21 in “2-dimensional ‘particle-in-a-box’ problems in quantum
mechanics: Part I” () for discussion of this elegant formula, which in the
general case reads

∞∑
n=−∞

g(n) =
∞∑

n=−∞

∫ +∞

−∞
g(y)e−2πiny dy
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We are brought thus to the conclusion that if, on the wedge, we set

ΨE,µ(r, θ) =
√

2m
α�2 Jµ(r

√
2mE/�2 ) sin(µθ) (103)

then ↓

lim
λ↓0

∫ ∞

0

e−λE

{ ∑
µ

ΨE,µ(r, θ)ΨE,µ(r0, θ0)
}
dE = 1

r δ(r − r0)δ(θ − θ0) (104)

Notice that the espressions on both left and right have dimension (length)−2.

ticklish point #2 A moment ago, when we looked to the free particle on a
line, we found that we needed both of the eigenfunctions exp

{
± i

√
2mE/�2

}
.

Why had we no need of the functions Jµ(−r
√

2mE/�2 ) when discussing free
motion on a wedge? Why were the functions (103) sufficient in themselves to
permit assembly of the delta function; i.e., to establish completeness? Because

Jµ(−x) =(−)µJµ(x)
(−)µ = cosµπ + i sinµπ

The functions exp(±ix) are linearly independent, but the functions Jµ(±x) are
not.

We have now only to make the replacement λ→ i
�
(t− t0) to obtain

K(r, θ, t; r0, θ0, t0) =
∫ ∞

0

e−
i
�
E (t−t0)

{ ∑
µ

ΨE,µ(r, θ)ΨE,µ(r0, θ0)
}
dE (105)

µ≡n(π/α)

which—since it satisfies the Schrödinger equation

− �
2

2m

{
1
r

∂
∂r r

∂
∂r + 1

r2
∂2

∂θ2

}
K = i� ∂

∂tK

and possesses the property that

lim
t↓t0

K(r, θ, t; r0, θ0, t0) = 1
r δ(r − r0)δ(θ − θ0)

—must provide the spectral description of the exact propagator for free motion
on a wedge.72

We are in position now to engage the “collapse problem.” Let m be confined
to the upper half-plane; i.e., to the interior of the wedge α = π (see Figure 12).
Equation (105) then supplies

K(r, θ, t; r0, θ0, 0) =
∫ ∞

0

e−
i
�
E t

{ ∞∑
n=0

ΨE,n(r, θ)ΨE,n(r0, θ0)
}
dE (106)

ΨE,n(r, θ) =
√

2m
π�2 Jn(r

√
2mE/�2 ) sin(nθ)

72 Notice that we did all the work when we established completeness. Proofs
of completeness are rare for exactly the same reason that exact propagators are
rare: each supplies the other.
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Figure 12: The simplest instance of the wedge problem arises when
α = π, which entails confinement to the half-plane. Two paths link
the source-point ◦ to the target-point •. The direct path has length

1direct = (x− x0)2 + (y − y0)2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

while the indirect/reflected path has length

1reflected = (x− x0)2 + (y + y0)2 = r2 + r2
0 − 2rr0 cos(θ + θ0)

Summation over classical paths (collapsed Feynman formalism), on the other
hand, supplies

K(r, θ, t; r0, θ0, 0) = m
iht exp

{
i
�

m
2t

[
(x− x0)2 + (y − y0)2

]}
(107.1)

− m
iht exp

{
i
�

m
2t

[
(x− x0)2 + (y + y0)2

]}
= m

iht exp
{

i
�

m
2t

[
r2 + r2

0 − 2rr0cos(θ − θ0)
]}

(107.2)

− m
iht exp

{
i
�

m
2t

[
r2 + r2

0 − 2rr0cos(θ + θ0)
]}

where the minus sign—introduced to achieve compliance with the boundary
condition

K(edge of the wedge, t; •, •, •) = 0 (108)
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—can be understood to arise from the conjectured circumstance73 that

classical action displays a jump discontinuity
∆S = 1

2h at reflection points

}
(108)

The K described at (107) satisfies the free Schrödinger equation and the wedge
boundary condition; moreover

lim
t↓0

K(x, y, t;x0, y0, 0) = δ(x− x0)
{
δ(y − y0)− δ(y + y0)

}
↓
= δ(x− x0)δ(y − y0) on upper half-plane

Those same three properties are claimed by the K described at (106). Evidently
we have in hand an instance of “collapse”—two distinct descriptions of the same
propagator.

How to establish the point analytically? Borrowing notation from page 76
and a trigonometric identity from page 77, we observe that (106) can be written

K = 2m
π�2

∑
n

{
1
2Gn cosn(θ − θ0)− 1

2Gn cosn(θ + θ0)
}

= m
π�2

1
λ exp

{
− m

2λ�2 (r2 + r2
0)

}
(109)

·
∑

n

In( m
2λ�2 2rr0)

{
cosn(θ − θ0)− cosn(θ + θ0)

}

with λ = i
�
t. It is management of the surviving

∑
n that inspires the following

mathematical digression

We are informed by “the other Russians”74 that

∞∑
n=0

Inν(z) cosnϕ = 1
2ν

k+∑
k=k−

Ak exp
{
z cos 2kπ+ϕ

ν

}
+ 1

2I0(z) (110)

where

k± ≡ ±
[

ν π∓ϕ
2π

]
: here the square bracket means “integral part of”

Ak = 1 for k �= k±

Ak± =
{

1
2 if ν π∓ϕ

2π = . . . ,−2,−1, 0, 1, 2, . . .
1 otherwise

73 Write −1 = eiπ = e
i
�
∆S . For discussion, see page 8 in an essay cited

previously.58 Recall that when the methods of ray optics are used to describe
reflection-induced interference effects one encounters a similar phenomenon.

74 A. P. Prudnikov, Yu. A. Brychkov & O. I. Marichev, Integrals & Series:
Volume II (), entry 5.8.5.4, which appears at the bottom of page 695.
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But Prudnikov et al cite no source. So on the afternoon of  May  I laid
the problem before Ray Mayer, a mathematical colleague whose command
of classical analysis is locally unrivaled, and who by the next morning had
produced the following argument: Let ν = 1, 2, 3, . . . and let z be complex.
Define

Fν,z(ϕ) ≡
ν−1∑
k=0

ez cos ϕ+2πk
ν

and notice that Fν,z(ϕ) is an even function with period 2π,75 which admits
therefore of Fourier development

Fν,z(ϕ) = 1
2a0 +

∞∑
m=1

am cos(mϕ)

am = 1
π

∫ 2π

0

Fν,z(ϕ) cos(mϕ) dϕ

= 1
π

ν−1∑
k=0

∫ 2π

0

ez cos ϕ+2πk
ν cos(mϕ) dϕ

= 1
π

ν−1∑
k=0

∫ 2π(k+1)
ν

2πk
ν

ez cos θ cos(m[νθ − 2πk]) νdθ

= 1
πν

∫ 2π

0

ez cos θ cos(mνθ) dθ

= 2ν · 1
π

∫ π

0

ez cos θ cos(mνθ) dθ

75 To see how this comes about, look for example to the case ν = 3: appealing
to familiar properties of the cosine, we find that the operation ϕ → −ϕ sends
the set {

cos
(

1
3ϕ

)
, cos

(
1
3ϕ + 1

32π
)
, cos

(
1
3ϕ + 2

32π
)}

into {
cos

(
1
3ϕ

)
, cos

(
1
3ϕ− 1

32π
)
, cos

(
1
3ϕ− 2

32π
)}

=
{

cos
(

1
3ϕ

)
, cos

(
1
3ϕ + 2

32π
)
, cos

(
1
3ϕ + 1

32π
)}

= permutation of the original set

while ϕ→ ϕ + 2π produces
{

cos
(

1
3ϕ + 1

32π
)
, cos

(
1
3ϕ + 1

32π + 1
32π

)
, cos

(
1
3ϕ + 1

32π + 2
32π

)}
=

{
cos

(
1
3ϕ + 1

32π
)
, cos

(
1
3ϕ + 2

32π
)
, cos

(
1
3ϕ

)}
= permutation of the original set
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But Abramowitz & Stegun report (at 9.6.20) and Watson proves (in §6.22)
that

1
π

∫ π

0

ez cos θ cos(mνθ) dθ = Imν(z) + 1
π sin(mνπ)

∫ ∞

0

e−z cosh t−mνt dt

provided |arg(z) | < 1
2π. In the intended physical application z = − i

�

m
2t2rr0

places us—characteristically—right at the edge of the allowed region. But
Mayer remarks that if mν is an integer—which in the present context is certainly
the case—then the second term on the right drops away; we are left with entire
functions on left and right, so the condition |arg(z) | < 1

2π can be disregarded.
The implication is that

am = 2νImν(z) for all complex numbers z

which gives

Fν,z(ϕ) ≡
ν−1∑
k=0

ez cos ϕ+2πk
ν = νI0(z) + 2ν

∞∑
m=1

Imν(z) cos(mϕ)

= 2ν
∞∑

n=0

Inν(z) cos(nϕ)− νI0(z)

or
∞∑

n=0

Inν(z) cos(nϕ) = 1
2ν

ν−1∑
k=0

ez cos ϕ+2πk
ν + 1

2I0(z) (111)

The sum on the right can, by the way, be written

ν−1+p∑
k=p

for all ± integers p

Mayer’s (111) is a special instance of (110), and his argument owes much of its
elegance to his decision to ignore the possibility that ν might not be an integer.
Here ends the mathematical digression.

Returning with (111)—which in the case ν = 1 reads

∞∑
n=0

In(z) cos(nϕ) = 1
2e

z cos ϕ + 1
2I0(z) (111.1)

—to (109), we observe that the 1
2I0(z) terms (which enter with opposite signs)

cancel, and that we are left with

K = m
iht exp

{
i
�

m
2t (r

2 + r2
0)

}
·
{
exp

[
− i

�

m
2t2rr0 cos(θ − θ0)

]
− exp

[
− i

�

m
2t2rr0 cos(θ + θ0)

]}

which precisely reproduces the collapsed Feynman sum (107.2).
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Figure 13: Construction of the 10 reflective paths ◦ → • in a
wedge with ν ≡ π/α = 5. Red paths are of even order (involve an
even number of reflections); blue paths are of odd order.

Suppose, more generally, that the wedge angle α divides π an integral number
of times; i.e., that

µ = nν where ν ≡ π
α =1, 2, 3, . . .
↑
—case just considered

We then have

K = ν m
π�2

1
λ exp

{
− m

2λ�2 (r2 + r2
0)

}
·
∑

n

Inν( m
2λ�2 2rr0)

{
cosnν(θ − θ0)− cosnν(θ + θ0)

}

which gives back (109) in the case ν = 1. Drawing upon (111) we get

= m
ihte

i
�

m
2t (r2+r2

0)

·
ν−1∑
k=0

{
e−

i
�

m
2t rr0 cos(θ−θ0+2αk) − e−

i
�

m
2t rr0 cos(θ+θ0+2αk)

}

=
{ ∑

images of even order

−
∑

images of odd order

}
m
ihte

i
�

m
2t (path length)2
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Figure 14: Illustration of how the preceding diagram is used to
deduce the design of a reflected path—here a path of odd order 3.

In all such cases the method of images (collapsed Feynman formalism)
works to perfection, and has a secure analytical base. But the method of images
encounters grave difficulties when

ν ≡ π
α is not an integer

Assume the wedge to be in “standard position:” θ = 0 on right edge; θ = α on
left edge. Reflection in either edge is r-preserving. It is geometrically evident
that

R ≡ reflection in right edge sends θ → − θ

L ≡ reflection in left edge sends θ → 2α− θ

and R2 = L2 = I , so reflective images of kth order are produced by the first
else second of these of these operations

· · · R L R L R︸ ︷︷ ︸ : terminates
{

L if k is even
R if k is odd

k factors

· · · L R L R L︸ ︷︷ ︸ : terminates
{

R if k is even
L if k is odd

k factors
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which produce

θ

− θ

2α + θ

−2α− θ

4α + θ

−4α− θ

...

±
[
k 2π

ν + θ
]

else

θ

2α− θ

−2α + θ

4α− θ

−4α + θ

6α− θ

...

±
[
k 2π

ν − θ
]

:

0th order
1st order

2nd order

3rd order

4th order

5th order
...

k = 0, 1, 2, . . .

with the understanding that +
[
0 2π

ν − θ
]

is to be omitted from the list on
the right. That same merged pointset can also—and more tranparently—be
produced by merging the flip-flop-flip-flop results (see the following figure) of
�/� “reflective tesselation”

� -tesselation
θ

− θ

2α + θ

2α− θ

4α + θ

4α− θ

...

+
[
k 2π

ν ∓ θ
]

flip
flop
flip
flop
flip

flip/flop

� -tesselation
θ

−2α− θ

−2α + θ

−4α− θ

−4α + θ

−6α− θ

...

−
[
k 2π

ν ∓ θ
]

Flip images are odd, flop images are even. It is clear (especially from the figure)
that

• if ν = integer then (flip-flop)ν restores the wedge face-up to its
original position: θ has become θ + 2π ≡ θ mod 2π but the wedge
lies now “on the next higher sheet.” Progress in the reverse sense
� yields the same point set, but deposits the wedge “on the next
lower sheet;”

• if ν = 1
2 · integer then (flip-flop)

1
2 ν restores the wedge face-down

to its original position: one must complete a second tour to restore
the wedge to its original state, but it lies then “on the second higher
sheet.” Progress in the reverse sense � places the wedge “on the
second lower sheet;”
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Figure 15: Reflective tesselation of type � on the left, of type �
on the left. The two operations are, in an obvious sense, inverses
of one another. Here α = 35◦, so ν = 36

7 is non-integral.

• if ν = a
b is rational then (flip-flop)a restores the wedge face-up

to its original position, but places it on “on the upper bth sheet.”
Progress in the reverse sense � places the wedge “on the lower bth

sheet;”

• if ν is irrational then (flip-flop)power never restores the wedge
its original position: the initial point has a continuum of reflective
images.

But if we place ourselves at ◦ inside a mirrored α -wedge with the intention of
shooting elastic pellets at the reflective images of a target • we find that the
number of visible target images depends jointly upon where the target has been
placed and where we stand. And that, as we fire in all directions, the

greatest possible number of reflections = least integer � ν ≡ π
α

but the number of reflections depends not only upon the direction in which fire
but where we stand, and (unless ν is an integer) the greatest achievable number
may be less than that.

These points are illustrated in Figure 16. Wedges in the left column were
generated by � tesselation: • images lie on the principal sheet, • images lie on
the sheet above. Wedges in the right column were generated by � tesselation:
black and red images have enchanged places: • images lie on the principal
sheet, • images lie on the sheet below. The upper row illustrates a situation
in which ◦ sees only one image in the left mirror, but two in the right (only
the 2nd-order trajectory is shown). In the middle row, ◦ has been moved to a
position where a second image has become visible in the left mirror (two remain
visible in the right mirror). In the lower row a third image has become visible
in the left mirror (and again, two remain visible in the right mirror). Three
is maximal in this instance, since (least integer greater than 5

2 )=3. Reflected
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Figure 16: The number of target images visible from a source
point depends on the relative placement of target and source. The
top, middle and bottom rows illustrate three typical situations, in a
wedge with ν = 5

2 . Details are discussed in the text.
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−2α −α 0 α 2α

−π π
range of visibility

Figure 17: The time axis runs up, the theta axis to the right.
The source point ◦ has angular coordinate θ0, the target point • has
angular coordinate θ. Even images • of the target appear at points
θ+k2α = k 2π

ν +θ, odd images • at points −θ+k2α = k 2π
ν −θ, where

k = . . . ,−2,−1, 0, 1, 2, . . . In this angular analog of the familiar
“barber shop construction” the time axis has no metric significance,
but serves only to distinguish “before” from “after.”

rays/particles visit alternately first one mirror/wall then the other, which is
why in each figure the successive images that enter into the construction of a
trajectory proceed • • • • · · · • •.

Notice also that—by the simplest of geometrical arguments—if • : (r, θ) is
visible/invisible from ◦ : (r0, θ0) then

� so is • visible/invisible from (r0 + a0, θ0)
� so is (r + a, θ) visible/invisible from ◦

In short: the number of • -images visible from ◦ depends only upon θ and θ0.
This conclusion will be sharpened in a moment.

The discovered irrelevance of r and r0 means that we can use an angular
analog of the familiar “barber shop construction” (Figure 17) to resolve all of
the “who sees what” questions presented by the wedge problem. Examination
of such figures discloses that

The number of even images • (including the 0th-order image •)
visible from ◦ depends on θ and θ0 only through their difference
θ − θ0. The order index k ranges from keven

− to keven
+ where

keven
+ ≡ greatest integer such that keven

+ 2α + (θ − θ0) � π

=
[π−(θ−θ0)

2α

]
= +

[
νπ−ϕ

2π

]
: ν ≡ π

α and ϕ ≡ ν(θ − θ0)

keven
− = −

[
νπ+ϕ

2π

]
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The number of odd images • visible from ◦ depends on θ and θ0

only through their sum θ + θ0. The order index k ranges from kodd
−

to kodd
+ where

kodd
+ ≡ greatest integer such that keven

+ 2α + (θ + θ0) � π

=
[π−(θ+θ0)

2α

]
= +

[
νπ−ϕ

2π

]
: ν ≡ π

α and ϕ ≡ ν(θ + θ0)

kodd
− = −

[
νπ+ϕ

2π

]


