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Introduction. Let me describe the little conundrum that served originally to
motivated this discussion. A particle of mass m is confined to the interior of a
one-dimensional box: 0 < x < a. The quantum theory of this simplest of all
quantum systems standardly proceeds from

1
2m

(!
i

∂
∂x

)2
ψ(x) = Eψ(x) : ψ(0) = ψ(a) = 0

One is led1 to eigenvalues

En = π2!2

2ma2
n2 : n = 1, 2, 3, . . .

and to normalized energy eigenfunctions

ψn(x) =
√

2/a sin
(
nπx/a

)

The normalized wavefunction

Ψ(x) =
√

30/a5 x(a − x)

does obviously satisfy the boundary conditions Ψ(0) = Ψ(a) = 0, but is not an
eigenstate, though it very closely resembles the ground state when plotted.

One expects to have—for the energy as for any other observable—

varψ(H) ≡
〈
[H − 〈H〉]2

〉
=

〈
H2

〉
− 〈H〉2

1 Griffiths, Introduction to Quantum Mechanics (2nd edition, ), page 32.
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If the system is an energy eigenstate then—because the energy is precisely
known—one expects the variance to vanish, and indeed

varψn(H) = E 2
n − (En)2 = 0

For other states ψ we expect to have

varψ(H) > 0 : ψ not an energy eigenstate

Look, however, to the quadratic state Ψ. If we

interpret H2 to mean
[ 1
2m

(!
i

∂
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)2]2
(1)

we are led to write (since Ψ(x) vanishes when differentiated three or more times)〈
H2

〉
= 0, and thus to the absurd result

varΨ(H) = 0 − 〈H〉2 = 0 −
( 5!2

ma2

)2

That there exist contexts in which !
i ∂x does not serve to represent the

momentum operator p (and in which [!
i ∂x]n does not serve to represent powers

pn of the momentum operator) has been frequently noted, and came forcibly to
my own attention while writing the final pages of “E. T. Whittaker’s quantum
formalism” (). I make reference there to (among other papers) Peter
D. Robinson & Joseph O. Hirschfelder, “Generalized momentum operators in
quantum mechanics,” J. Math. Phys. 4, 338 (1963) and Peter D. Robinson,
“Integral forms for quantum-mechanical momentum operators,” J. Math. Phys.
7, 2060 (1966), and it is on Robinson’s work that I base the present discussion.

Why self-adjointness demonstrations sometimes fail. The one-dimensional free
particle problem directs our attention to the space H of functions that are
defined and square-integrable on the real line: x ∈ (−∞, +∞). Assuming the
inner product to be defined

(φ, ψ) ≡
∫ +∞

−∞
φ∗(x)ψ(x) dx

we have

(φ, i∂ψ) =
∫ +∞

−∞
φ∗(x)[i∂ψ(x)] dx

= iφ∗(x)ψ(x)
∣∣∣
+∞

−∞︸ ︷︷ ︸
−

∫ +∞

−∞
[i∂φ∗(x)]ψ(x) dx

boundary term

= boundary term +
∫ +∞

−∞
[i∂φ(x)]∗ψ(x) dx

= (i∂φ, ψ)
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We have Similarly

(φ, (i∂)2ψ) = iφ∗(x)[i∂ψ(x)]
∣∣∣
+∞

−∞
−

∫ +∞

−∞
[i∂φ∗(x)][i∂ψ(x)] dx

= iφ∗(x)[i∂ψ(x)]
∣∣∣
+∞

−∞
− i[i∂φ∗(x)]ψ(x)

∣∣∣
+∞

−∞

+
∫ +∞

−∞
[(i∂)2φ∗(x)]ψ(x) dx

= two boundary terms +
∫ +∞

−∞
[(i∂)2φ(x)]∗ψ(x) dx

= ((i∂)2φ, ψ)
...

(φ, (i∂)nψ) = ((i∂)nφ, ψ)
The self-adjointness of all the differential operators (i∂)n is seen thus to follow
from the presumption that all the elements of H vanish (together with their
derivatives of all orders) at x → ±∞, which would appear to follow from the
normalizability requirement (though David Griffiths remarks somewhere that
there exist normalizable functions on the real line that do not vanish at infinity).

If the particle is constrained to move on a ring they we expect ψ(x) ∈
H and all of its derivatives to be periodic—a condition that serves even less
problematically to kill all all boundary terms.

Problems arise, however, if the particle is constrained to move on a finite
interval (confined to the interior of a box): x ∈ [a, b]. For while we can expect
to have ψ(a) = ψ(b) = 0, we cannot expect to have ψ(n)(a) = ψ(n)(b). Look,
for example, to the energy eigenfunctions

ψn(x) =
√

2/a sin
(
nπx/a

)

of a particle confined to the interior of the box x ∈ [0, a]. For such functions
we have

ψ(k)
n (0) = ψ(k)

n (a) = 0 : k even, all n

ψ(k)
n (0) = +ψ(k)

n (a) (= 0 : k odd, n even

ψ(k)
n (0) = −ψ(k)

n (a) (= 0 : k odd, n odd
And if we take into account the notion that the eigenfunctions vanish outside
the box then the derivatives of all orders become discontinuous (ill-defined) at
x = 0 and x = a.

Notational simplifications. It is to minimize notational clutter that I set
! = 1, 2m = 1, a = 1

The time-independent Schrödinger equations now reads
(i∂x)2ψ(x) = Eψ(x) : ψ(0) = ψ(1) = 0

The energy eigenvalues have become
En = π2n2 : n = 1, 2, 3, . . .
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The eigenfunctions have become

ψn(x) =
√

2 sin(nπx)

and span a function space H0 all elements of which vanish at the boundaries of
the unit interval. But application of the i∂x operator yields functions

i∂ψn(x) = i
√

2 nπ cos(nπx)

that do not vanish at the boundaries of the unit interval, functions that are not
elements of H0, that are elements of H⊃H0. We have

(φ, i∂ψ) =
∫ 1

0
φ∗(x)[i∂ψ(x)] dx

= iφ∗(x)ψ(x)
∣∣∣
1

0︸ ︷︷ ︸
−

∫ 1

0
[i∂φ∗(x)]ψ(x) dx

boundary term

= iφ∗(1)ψ(1) − iφ∗(0)ψ(0) +
∫ 1

0
[i∂φ(x)]∗ψ(x) dx

and, since deprived of means to kill the boundary term, must find a way to live
with it. We observe in this connection that

∫ 1

0
δ(x − 0)f(x) dx = 1

2f(0)
∫ 1

0
δ(x − 1)f(x) dx = 1

2f(1)

so if we define
∆(x) ≡ δ(x − 1) − δ(x − 0)

we find ∫ 1

0
∆(x)f(x) dx = 1

2f(x)
∣∣∣∣
1

0

∫ 1

0
φ∗(x)[i{∂ −∆}ψ(x)] dx =

(
1 − 1

2

)
iφ∗(x)ψ(x)

∣∣∣
1

0
−

∫ 1

0
[i∂φ∗(x)]ψ(x) dx

= 1
2 iφ∗(x)ψ(x)

∣∣∣
1

0
+

∫ 1

0
[i∂φ(x)]∗ψ(x) dx

=
∫ 1

0
[i{∂ −∆}φ(x)]∗ψ(x) dx

The implication is that we restore self-adjointness if we send

i∂x +−→ ℘ ≡ i {∂x −∆(x)}


